Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Public Health Surveill ; 4(4): e66, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30291101

ABSTRACT

BACKGROUND: Inadequate administrative health data, suboptimal public health infrastructure, rapid and unplanned urbanization, environmental degradation, and poor penetration of information technology make the tracking of health and well-being of populations and their social determinants in the developing countries challenging. Technology-integrated comprehensive surveillance platforms have the potential to overcome these gaps. OBJECTIVE: This paper provides methodological insights into establishing a geographic information system (GIS)-integrated, comprehensive surveillance platform in rural North India, a resource-constrained setting. METHODS: The International Clinical Epidemiology Network Trust International established a comprehensive SOMAARTH Demographic, Development, and Environmental Surveillance Site (DDESS) in rural Palwal, a district in Haryana, North India. The surveillance platform evolved by adopting four major steps: (1) site preparation, (2) data construction, (3) data quality assurance, and (4) data update and maintenance system. Arc GIS 10.3 and QGIS 2.14 software were employed for geospatial data construction. Surveillance data architecture was built upon the geospatial land parcel datasets. Dedicated software (SOMAARTH-1) was developed for handling high volume of longitudinal datasets. The built infrastructure data pertaining to land use, water bodies, roads, railways, community trails, landmarks, water, sanitation and food environment, weather and air quality, and demographic characteristics were constructed in a relational manner. RESULTS: The comprehensive surveillance platform encompassed a population of 0.2 million individuals residing in 51 villages over a land mass of 251.7 sq km having 32,662 households and 19,260 nonresidential features (cattle shed, shops, health, education, banking, religious institutions, etc). All land parcels were assigned georeferenced location identification numbers to enable space and time monitoring. Subdivision of villages into sectors helped identify socially homogenous community clusters (418/676, 61.8%, sectors). Water and hygiene parameters of the whole area were mapped on the GIS platform and quantified. Risk of physical exposure to harmful environment (poor water and sanitation indicators) was significantly associated with the caste of individual household (P=.001), and the path was mediated through the socioeconomic status and density of waste spots (liquid and solid) of the sector in which these households were located. Ground-truthing for ascertaining the land parcel level accuracies, community involvement in mapping exercise, and identification of small habitations not recorded in the administrative data were key learnings. CONCLUSIONS: The SOMAARTH DDESS experience allowed us to document and explore dynamic relationships, associations, and pathways across multiple levels of the system (ie, individual, household, neighborhood, and village) through a geospatial interface. This could be used for characterization and monitoring of a wide range of proximal and distal determinants of health.

2.
PLoS Med ; 15(7): e1002615, 2018 07.
Article in English | MEDLINE | ID: mdl-30040859

ABSTRACT

BACKGROUND: Neurodevelopmental disorders (NDDs) compromise the development and attainment of full social and economic potential at individual, family, community, and country levels. Paucity of data on NDDs slows down policy and programmatic action in most developing countries despite perceived high burden. METHODS AND FINDINGS: We assessed 3,964 children (with almost equal number of boys and girls distributed in 2-<6 and 6-9 year age categories) identified from five geographically diverse populations in India using cluster sampling technique (probability proportionate to population size). These were from the North-Central, i.e., Palwal (N = 998; all rural, 16.4% non-Hindu, 25.3% from scheduled caste/tribe [SC-ST] [these are considered underserved communities who are eligible for affirmative action]); North, i.e., Kangra (N = 997; 91.6% rural, 3.7% non-Hindu, 25.3% SC-ST); East, i.e., Dhenkanal (N = 981; 89.8% rural, 1.2% non-Hindu, 38.0% SC-ST); South, i.e., Hyderabad (N = 495; all urban, 25.7% non-Hindu, 27.3% SC-ST) and West, i.e., North Goa (N = 493; 68.0% rural, 11.4% non-Hindu, 18.5% SC-ST). All children were assessed for vision impairment (VI), epilepsy (Epi), neuromotor impairments including cerebral palsy (NMI-CP), hearing impairment (HI), speech and language disorders, autism spectrum disorders (ASDs), and intellectual disability (ID). Furthermore, 6-9-year-old children were also assessed for attention deficit hyperactivity disorder (ADHD) and learning disorders (LDs). We standardized sample characteristics as per Census of India 2011 to arrive at district level and all-sites-pooled estimates. Site-specific prevalence of any of seven NDDs in 2-<6 year olds ranged from 2.9% (95% CI 1.6-5.5) to 18.7% (95% CI 14.7-23.6), and for any of nine NDDs in the 6-9-year-old children, from 6.5% (95% CI 4.6-9.1) to 18.5% (95% CI 15.3-22.3). Two or more NDDs were present in 0.4% (95% CI 0.1-1.7) to 4.3% (95% CI 2.2-8.2) in the younger age category and 0.7% (95% CI 0.2-2.0) to 5.3% (95% CI 3.3-8.2) in the older age category. All-site-pooled estimates for NDDs were 9.2% (95% CI 7.5-11.2) and 13.6% (95% CI 11.3-16.2) in children of 2-<6 and 6-9 year age categories, respectively, without significant difference according to gender, rural/urban residence, or religion; almost one-fifth of these children had more than one NDD. The pooled estimates for prevalence increased by up to three percentage points when these were adjusted for national rates of stunting or low birth weight (LBW). HI, ID, speech and language disorders, Epi, and LDs were the common NDDs across sites. Upon risk modelling, noninstitutional delivery, history of perinatal asphyxia, neonatal illness, postnatal neurological/brain infections, stunting, LBW/prematurity, and older age category (6-9 year) were significantly associated with NDDs. The study sample was underrepresentative of stunting and LBW and had a 15.6% refusal. These factors could be contributing to underestimation of the true NDD burden in our population. CONCLUSIONS: The study identifies NDDs in children aged 2-9 years as a significant public health burden for India. HI was higher than and ASD prevalence comparable to the published global literature. Most risk factors of NDDs were modifiable and amenable to public health interventions.


Subject(s)
Neurodevelopmental Disorders/epidemiology , Age Distribution , Child , Child Behavior , Child Development , Child, Preschool , Cross-Sectional Studies , Female , Health Surveys , Humans , India/epidemiology , Male , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/physiopathology , Neurodevelopmental Disorders/psychology , Prevalence , Risk Assessment , Risk Factors
3.
Indian J Public Health ; 58(4): 261-6, 2014.
Article in English | MEDLINE | ID: mdl-25491518

ABSTRACT

Three distinct groups of people, the sick, at risk and a healthy population constitute the beneficiaries of any health services. Available health care packages are based on the paradigm of the "natural history of the disease and the five levels of the prevention." Patient-centric "personal care services" and community centric "public health care" are the two packages universally provided to a community. A health care system can only be effective and efficient if there is balanced mix of the personal and public health care delivered as a comprehensive package in a regionalized graded manner by a well-trained manpower. The current health care delivery system is mostly personal care centered and public health component is in the fringes and being delivered as vertical programs through the multipurpose health worker. The alternative model speaks about bi-furcating the two types of services and delivering both as a comprehensive package to the community. As per the constitution of India health services including major public health services are state subject but the nature of emerging public health problems relates to mass movement of people and goods, environmental changes due industry and other developmental activities etc. resulting in the spread of the same beyond the manmade geographical boundary, some public health activity may be included in the union/concurrent list. To deliver the packages a public health cadre may be created at the state and center and be equipped with public health knowledge and skill to deliver well-defined evidence-based service package to control the existing problem and keep strict vigilance to prevent entry/emergence of new health problems.


Subject(s)
Delivery of Health Care/organization & administration , Public Health Administration , Community Health Services/organization & administration , Health Care Reform/organization & administration , Health Policy , Health Services Accessibility/organization & administration , Humans , India , Patient-Centered Care/organization & administration , Vulnerable Populations
SELECTION OF CITATIONS
SEARCH DETAIL
...