Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Semin Radiat Oncol ; 34(3): 310-322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880540

ABSTRACT

Treating radioresistant and bulky tumors is challenging due to their inherent resistance to standard therapies and their large size. GRID and lattice spatially fractionated radiation therapy (simply referred to GRID RT and LRT) offer promising techniques to tackle these issues. Both approaches deliver radiation in a grid-like or lattice pattern, creating high-dose peaks surrounded by low-dose valleys. This pattern enables the destruction of significant portions of the tumor while sparing healthy tissue. GRID RT uses a 2-dimensional pattern of high-dose peaks (15-20 Gy), while LRT delivers a three-dimensional array of high-dose vertices (10-20 Gy) spaced 2-5 cm apart. These techniques are beneficial for treating a variety of cancers, including soft tissue sarcomas, osteosarcomas, renal cell carcinoma, melanoma, gastrointestinal stromal tumors (GISTs), pancreatic cancer, glioblastoma, and hepatocellular carcinoma. The specific grid and lattice patterns must be carefully tailored for each cancer type to maximize the peak-to-valley dose ratio while protecting critical organs and minimizing collateral damage. For gynecologic cancers, the treatment plan should align with the international consensus guidelines, incorporating concurrent chemotherapy for optimal outcomes. Despite the challenges of precise dosimetry and patient selection, GRID RT and LRT can be cost-effective using existing radiation equipment, including particle therapy systems, to deliver targeted high-dose radiation peaks. This phased approach of partial high-dose induction radiation therapy with standard fractionated radiation therapy maximizes immune modulation and tumor control while reducing toxicity. Comprehensive treatment plans using these advanced techniques offer a valuable framework for radiation oncologists, ensuring safe and effective delivery of therapy for radioresistant and bulky tumors. Further clinical trials data and standardized guidelines will refine these strategies, helping expand access to innovative cancer treatments.


Subject(s)
Dose Fractionation, Radiation , Neoplasms , Humans , Neoplasms/radiotherapy , Radiation Tolerance , Radiotherapy Planning, Computer-Assisted/methods
2.
Lancet Oncol ; 24(8): e344-e354, 2023 08.
Article in English | MEDLINE | ID: mdl-37541280

ABSTRACT

Brain metastases are an increasing global public health concern, even as survival rates improve for patients with metastatic disease. Both metastases and the sequelae of their treatment are key determinants of the inter-related priorities of patient survival, function, and quality of life, mandating a multidimensional approach to clinical care and research. At a virtual National Cancer Institute Workshop in September, 2022, key stakeholders convened to define research priorities to address the crucial areas of unmet need for patients with brain metastases to achieve meaningful advances in patient outcomes. This Policy Review outlines existing knowledge gaps, collaborative opportunities, and specific recommendations regarding consensus priorities and future directions in brain metastases research. Achieving major advances in research will require enhanced coordination between the ongoing efforts of individual organisations and consortia. Importantly, the continual and active engagement of patients and patient advocates will be necessary to ensure that the directionality of all efforts reflects what is most meaningful in the context of patient care.


Subject(s)
Biomedical Research , Brain Neoplasms , United States , Humans , Quality of Life , National Cancer Institute (U.S.) , Consensus , Brain Neoplasms/therapy
3.
Radiat Res ; 198(6): 625-631, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35976726

ABSTRACT

Preclinical studies inform and guide the development of novel treatment combination strategies that bridge the laboratory with the clinic. We aimed to evaluate approaches cancer researchers used to justify advancing new combinations of molecularly targeted agents and radiation treatment into early-phase human clinical trials. Unsolicited early phase clinical trial proposals submitted to the National Cancer Institute's Cancer Therapy Evaluation Program between January 2016 and July 2020 were curated to quantify key characteristics and proportion of preclinical data provided by trialists seeking to conduct molecularly targeted agent-radiation combination studies in cancer patients. These data elucidate the current landscape for how the rationale for a molecularly targeted agent-radiation combination therapy is supported by preclinical research and illustrate unique challenges faced in translation at the intersection of precision medicine and radiation oncology.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/radiotherapy
4.
Lancet Oncol ; 23(2): 279-291, 2022 02.
Article in English | MEDLINE | ID: mdl-35033226

ABSTRACT

BACKGROUND: Patients with non-small-cell lung cancer (NSCLC) that is resistant to PD-1 and PD-L1 (PD[L]-1)-targeted therapy have poor outcomes. Studies suggest that radiotherapy could enhance antitumour immunity. Therefore, we investigated the potential benefit of PD-L1 (durvalumab) and CTLA-4 (tremelimumab) inhibition alone or combined with radiotherapy. METHODS: This open-label, multicentre, randomised, phase 2 trial was done by the National Cancer Institute Experimental Therapeutics Clinical Trials Network at 18 US sites. Patients aged 18 years or older with metastatic NSCLC, an Eastern Cooperative Oncology Group performance status of 0 or 1, and progression during previous PD(L)-1 therapy were eligible. They were randomly assigned (1:1:1) in a web-based system by the study statistician using a permuted block scheme (block sizes of three or six) without stratification to receive either durvalumab (1500 mg intravenously every 4 weeks for a maximum of 13 cycles) plus tremelimumab (75 mg intravenously every 4 weeks for a maximum of four cycles) alone or with low-dose (0·5 Gy delivered twice per day, repeated for 2 days during each of the first four cycles of therapy) or hypofractionated radiotherapy (24 Gy total delivered over three 8-Gy fractions during the first cycle only), 1 week after initial durvalumab-tremelimumab administration. Study treatment was continued until 1 year or until progression. The primary endpoint was overall response rate (best locally assessed confirmed response of a partial or complete response) and, along with safety, was analysed in patients who received at least one dose of study therapy. The trial is registered with ClinicalTrials.gov, NCT02888743, and is now complete. FINDINGS: Between Aug 24, 2017, and March 29, 2019, 90 patients were enrolled and randomly assigned, of whom 78 (26 per group) were treated. This trial was stopped due to futility assessed in an interim analysis. At a median follow-up of 12·4 months (IQR 7·8-15·1), there were no differences in overall response rates between the durvalumab-tremelimumab alone group (three [11·5%, 90% CI 1·2-21·8] of 26 patients) and the low-dose radiotherapy group (two [7·7%, 0·0-16·3] of 26 patients; p=0·64) or the hypofractionated radiotherapy group (three [11·5%, 1·2-21·8] of 26 patients; p=0·99). The most common grade 3-4 adverse events were dyspnoea (two [8%] in the durvalumab-tremelimumab alone group; three [12%] in the low-dose radiotherapy group; and three [12%] in the hypofractionated radiotherapy group) and hyponatraemia (one [4%] in the durvalumab-tremelimumab alone group vs two [8%] in the low-dose radiotherapy group vs three [12%] in the hypofractionated radiotherapy group). Treatment-related serious adverse events occurred in one (4%) patient in the durvalumab-tremelimumab alone group (maculopapular rash), five (19%) patients in the low-dose radiotherapy group (abdominal pain, diarrhoea, dyspnoea, hypokalemia, and respiratory failure), and four (15%) patients in the hypofractionated group (adrenal insufficiency, colitis, diarrhoea, and hyponatremia). In the low-dose radiotherapy group, there was one death from respiratory failure potentially related to study therapy. INTERPRETATION: Radiotherapy did not increase responses to combined PD-L1 plus CTLA-4 inhibition in patients with NSCLC resistant to PD(L)-1 therapy. However, PD-L1 plus CTLA-4 therapy could be a treatment option for some patients. Future studies should refine predictive biomarkers in this setting. FUNDING: The US National Institutes of Health and the Dana-Farber Cancer Institute.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/therapy , Radiation Dose Hypofractionation , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Combined Modality Therapy , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis , Radiotherapy Dosage
5.
Cancer Rep (Hoboken) ; 5(12): e1553, 2022 12.
Article in English | MEDLINE | ID: mdl-34533293

ABSTRACT

BACKGROUND: Ionizing radiation (IR) is a standard modality for the management of solid tumors. Apart from its killing effects, IR can induce pro-survival factors leading to radioresistance of cancer. Mechanistic understanding of radiation resistance is warranted to overcome the pro-survival effects of IR. AIM: The aim of this study was to investigate the role of upstream stimulatory factor-1 (USF-1) in the induction of radioresistance in prostate cancer and its targeting by histone deacetylase (HDAC) inhibitors to reverse resistance. METHODS AND RESULTS: This study reports here that USF-1 is a marker for radioresistance in PC-3 cells. Using protein-DNA array analysis, it was documented that DNA binding activity of USF-1 was elevated following IR in PC-3 cells. Novel HDAC inhibitors downregulated USF-1 binding either alone or in combination with IR. A 5 Gy dose of IR induced the expression of target genes of USF-1 (human telomerase reverse transcriptase [hTERT], IGF2R, CyclinB1, and Cdk1), however, HDAC inhibitors alone or in combination with IR reduced their expression as measured by real time RT PCR analysis. Furthermore, immunofluorescence analysis revealed that while USF-1 localized primarily in the nucleus following IR, it localized in the cytoplasm when treated with HDAC inhibitors/combination. Maximum effects of modulation of USF-1 expression (overexpression or suppression) were observed on hTERT activity as determined by dual-luciferase reporter assay. To further confirm the role of USF-1 in radioresistance, cell growth was analyzed using the real-time cell electronic sensing (RT-CES) system. This study found that USF-1-transfected cells proliferated faster than the vector-transfected cells with or without treatments with HDAC inhibitors/IR/combination. Colony forming assay also confirmed that USF-1 overexpression led to increased survival following IR. Importantly, colony-forming assay demonstrated that HDAC inhibitors reversed the radioresistance in both PC-3 and DU-145 cells. CONCLUSION: These studies demonstrate that HDAC inhibitors reverse the radioresistance in prostate cancer through down-modulation of USF-1-mediated transactivation of target genes involved in cell proliferation and cell cycle.


Subject(s)
DNA-Binding Proteins , Histone Deacetylase Inhibitors , Prostatic Neoplasms , Radiation Tolerance , Upstream Stimulatory Factors , Humans , Male , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Deacetylase Inhibitors/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Upstream Stimulatory Factors/genetics , Upstream Stimulatory Factors/metabolism , Radiation Tolerance/drug effects , PC-3 Cells , Down-Regulation
7.
JNCI Cancer Spectr ; 5(4)2021 08.
Article in English | MEDLINE | ID: mdl-34350377

ABSTRACT

In a time of rapid advances in science and technology, the opportunities for radiation oncology are undergoing transformational change. The linkage between and understanding of the physical dose and induced biological perturbations are opening entirely new areas of application. The ability to define anatomic extent of disease and the elucidation of the biology of metastases has brought a key role for radiation oncology for treating metastatic disease. That radiation can stimulate and suppress subpopulations of the immune response makes radiation a key participant in cancer immunotherapy. Targeted radiopharmaceutical therapy delivers radiation systemically with radionuclides and carrier molecules selected for their physical, chemical, and biochemical properties. Radiation oncology usage of "big data" and machine learning and artificial intelligence adds the opportunity to markedly change the workflow for clinical practice while physically targeting and adapting radiation fields in real time. Future precision targeting requires multidimensional understanding of the imaging, underlying biology, and anatomical relationship among tissues for radiation as spatial and temporal "focused biology." Other means of energy delivery are available as are agents that can be activated by radiation with increasing ability to target treatments. With broad applicability of radiation in cancer treatment, radiation therapy is a necessity for effective cancer care, opening a career path for global health serving the medically underserved in geographically isolated populations as a substantial societal contribution addressing health disparities. Understanding risk and mitigation of radiation injury make it an important discipline for and beyond cancer care including energy policy, space exploration, national security, and global partnerships.


Subject(s)
Artificial Intelligence/trends , Neoplasms/radiotherapy , Patient-Centered Care/trends , Radiation Oncology/trends , Research/trends , Big Data , Clinical Trials as Topic , Humans , Hyperthermia, Induced , Neutron Capture Therapy/methods , Patient-Centered Care/organization & administration , Photochemotherapy , Radiation Oncology/organization & administration , Radiation Tolerance , Radiobiology/education , Radiopharmaceuticals/therapeutic use , Radiotherapy/adverse effects , Radiotherapy/methods , Radiotherapy/trends , Relative Biological Effectiveness , Research/organization & administration , Research Support as Topic
8.
J Natl Cancer Inst ; 113(10): 1285-1298, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33792717

ABSTRACT

Cellular senescence is an essential tumor suppressive mechanism that prevents the propagation of oncogenically activated, genetically unstable, and/or damaged cells. Induction of tumor cell senescence is also one of the underlying mechanisms by which cancer therapies exert antitumor activity. However, an increasing body of evidence from preclinical studies demonstrates that radiation and chemotherapy cause accumulation of senescent cells (SnCs) both in tumor and normal tissue. SnCs in tumors can, paradoxically, promote tumor relapse, metastasis, and resistance to therapy, in part, through expression of the senescence-associated secretory phenotype. In addition, SnCs in normal tissue can contribute to certain radiation- and chemotherapy-induced side effects. Because of its multiple roles, cellular senescence could serve as an important target in the fight against cancer. This commentary provides a summary of the discussion at the National Cancer Institute Workshop on Radiation, Senescence, and Cancer (August 10-11, 2020, National Cancer Institute, Bethesda, MD) regarding the current status of senescence research, heterogeneity of therapy-induced senescence, current status of senotherapeutics and molecular biomarkers, a concept of "one-two punch" cancer therapy (consisting of therapeutics to induce tumor cell senescence followed by selective clearance of SnCs), and its integration with personalized adaptive tumor therapy. It also identifies key knowledge gaps and outlines future directions in this emerging field to improve treatment outcomes for cancer patients.


Subject(s)
Cellular Senescence , Neoplasms , Biomarkers , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Senescence-Associated Secretory Phenotype
9.
Radiat Res ; 195(6): 549-560, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33826739

ABSTRACT

Birinapant is a novel SMAC peptidomimetic molecule in clinical development. It suppresses the inhibitor of apoptosis proteins (IAPs) and promotes cytochrome-C/Apaf-1/caspase-9 activation to induce effective apoptosis. Because IAP inhibition has been shown to enhance the sensitivity of cancer cells to radiation, we investigated the role of birinapant in radiosensitization of glioblastoma cells in vitro and in vivo. Two glioblastoma cell lines, U-251 and U-87, were used to analyze radiosensitization in vitro with 7-AAD cell death/apoptosis and clonogenic assays. Subcutaneous flank (U-251 and U-87) and intracranial orthotopic (U-251) xenografts in nude mice were used to evaluate radiosensitization in vivo. TNF-α levels in media and serum were measured using electrochemiluminescence. Radiosensitization in vitro was more prominent for U-251 cells than for U-87 cells. In vivo, in both tumor models, significant tumor growth delay was observed with combination treatment compared to radiation alone. There was a survival benefit with combination treatment in the orthotopic U-251 model. TNF-α levels in media correlated directly with radiation dose in vitro. These findings show that birinapant can enhance the radiosensitivity of glioblastoma cell lines in cell-based assays and tumor models via radiation-induced TNF-α. Further study into the use of birinapant with radiation therapy is warranted.


Subject(s)
Dipeptides/pharmacology , Glioblastoma/pathology , Indoles/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Radiation Tolerance/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Transformation, Neoplastic , Enzyme Activation/drug effects , Enzyme Activation/radiation effects , Humans , Mice , Tumor Necrosis Factor-alpha/metabolism
10.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: mdl-33827904

ABSTRACT

Recent evidence indicates that ionizing radiation can enhance immune responses to tumors. Advances in radiation delivery techniques allow hypofractionated delivery of conformal radiotherapy. Hypofractionation or other modifications of standard fractionation may improve radiation's ability to promote immune responses to tumors. Other novel delivery options may also affect immune responses, including T-cell activation and tumor-antigen presentation changes. However, there is limited understanding of the immunological impact of hypofractionated and unique multifractionated radiotherapy regimens, as these observations are relatively recent. Hence, these differences in radiotherapy fractionation result in distinct immune-modulatory effects. Radiation oncologists and immunologists convened a virtual consensus discussion to identify current deficiencies, challenges, pitfalls and critical gaps when combining radiotherapy with immunotherapy and making recommendations to the field and advise National Cancer Institute on new directions and initiatives that will help further development of these two fields.This commentary aims to raise the awareness of this complexity so that the need to study radiation dose, fractionation, type and volume is understood and valued by the immuno-oncology research community. Divergence of approaches and findings between preclinical studies and clinical trials highlights the need for evaluating the design of future clinical studies with particular emphasis on radiation dose and fractionation, immune biomarkers and selecting appropriate end points for combination radiation/immune modulator trials, recognizing that direct effect on the tumor and potential abscopal effect may well be different. Similarly, preclinical studies should be designed as much as possible to model the intended clinical setting. This article describes a conceptual framework for testing different radiation therapy regimens as separate models of how radiation itself functions as an immunomodulatory 'drug' to provide alternatives to the widely adopted 'one-size-fits-all' strategy of frequently used 8 Gy×3 regimens immunomodulation.


Subject(s)
Clinical Decision-Making , Immunotherapy , Neoplasms/therapy , Radiation Dosage , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Animals , Combined Modality Therapy , Dose Fractionation, Radiation , Humans , Immunotherapy/adverse effects , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Patient Safety , Risk Assessment , Risk Factors , Treatment Outcome , Tumor Microenvironment/immunology
11.
Clin Cancer Res ; 27(9): 2470-2480, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33568343

ABSTRACT

PURPOSE: Prospective human data are lacking regarding safety, efficacy, and immunologic impacts of different radiation doses administered with combined PD-L1/CTLA-4 blockade. PATIENTS AND METHODS: We performed a multicenter phase II study randomly assigning patients with metastatic microsatellite stable colorectal cancer to repeated low-dose fractionated radiation (LDFRT) or hypofractionated radiation (HFRT) with PD-L1/CTLA-4 inhibition. The primary endpoint was response outside the radiation field. Correlative samples were analyzed using multiplex immunofluorescence (IF), IHC, RNA/T-cell receptor (TCR) sequencing, cytometry by time-of-flight (CyTOF), and Olink. RESULTS: Eighteen patients were evaluable for response. Median lines of prior therapy were four (range, 1-7). Sixteen patients demonstrated toxicity potentially related to treatment (84%), and 8 patients had grade 3-4 toxicity (42%). Best response was stable disease in 1 patient with out-of-field tumor shrinkage. Median overall survival was 3.8 months (90% confidence interval, 2.3-5.7 months). Correlative IF and RNA sequencing (RNA-seq) revealed increased infiltration of CD8+ and CD8+/PD-1+/Ki-67+ T cells in the radiation field after HFRT. LDFRT increased foci of micronuclei/primary nuclear rupture in two subjects. CyTOF and RNA-seq demonstrated significant declines in multiple circulating immune populations, particularly in patients receiving HFRT. TCR sequencing revealed treatment-associated changes in T-cell repertoire in the tumor and peripheral blood. CONCLUSIONS: We demonstrate the feasibility and safety of adding LDFRT and HFRT to PD-L1/CTLA-4 blockade. Although the best response of stable disease does not support the use of concurrent PD-L1/CTLA-4 inhibition with HFRT or LDFRT in this population, biomarkers provide support that both LDFRT and HFRT impact the local immune microenvironment and systemic immunogenicity that can help guide future studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/radiotherapy , Radiation Dose Hypofractionation , Antineoplastic Combined Chemotherapy Protocols/adverse effects , B7-H1 Antigen/antagonists & inhibitors , Biomarkers , CTLA-4 Antigen/antagonists & inhibitors , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/etiology , Combined Modality Therapy/methods , Gene Expression Profiling , Humans , Immune Checkpoint Inhibitors/administration & dosage , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasm Staging , Treatment Outcome
13.
J Natl Cancer Inst ; 113(6): 665-679, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33351071

ABSTRACT

Although the development of effective combined chemoradiation regimens for esophageal cancers has resulted in statistically significant survival benefits, the majority of patients treated with curative intent develop locoregional and/or distant relapse. Further improvements in disease control and survival will require the development of individualized therapy based on the knowledge of host and tumor genomics and potentially harnessing the host immune system. Although there are a number of gene targets that are amplified and proteins that are overexpressed in esophageal cancers, attempts to target several of these have not proven successful in unselected patients. Herein, we review our current state of knowledge regarding the molecular pathways implicated in esophageal carcinoma, and the available agents for targeting these pathways that may rationally be combined with standard chemoradiation, with the hope that this commentary will guide future efforts of novel combinations of therapy.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Carcinoma, Squamous Cell/pathology , Chemoradiotherapy , Combined Modality Therapy , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/therapy , Humans , Neoplasm Recurrence, Local
14.
Radiat Res ; 194(6): 665-677, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33348375

ABSTRACT

The limits of radiation tolerance, which often deter the use of large doses, have been a major challenge to the treatment of bulky primary and metastatic cancers. A novel technique using spatial modulation of megavoltage therapy beams, commonly referred to as spatially fractionated radiation therapy (SFRT) (e.g., GRID radiation therapy), which purposefully maintains a high degree of dose heterogeneity across the treated tumor volume, has shown promise in clinical studies as a method to improve treatment response of advanced, bulky tumors. Compared to conventional uniform-dose radiotherapy, the complexities of megavoltage GRID therapy include its highly heterogeneous dose distribution, very high prescription doses, and the overall lack of experience among physicists and clinicians. Since only a few centers have used GRID radiation therapy in the clinic, wide and effective use of this technique has been hindered. To date, the mechanisms underlying the observed high tumor response and low toxicity are still not well understood. To advance SFRT technology and planning, the Physics Working Group of the Radiosurgery Society (RSS) GRID/Lattice, Microbeam and Flash Radiotherapy Working Groups, was established after an RSS-NCI Workshop. One of the goals of the Physics Working Group was to develop consensus recommendations to standardize dose prescription, treatment planning approach, response modeling and dose reporting in GRID therapy. The objective of this report is to present the results of the Physics Working Group's consensus that includes recommendations on GRID therapy as an SFRT technology, field dosimetric properties, techniques for generating GRID fields, the GRID therapy planning methods, documentation metrics and clinical practice recommendations. Such understanding is essential for clinical patient care, effective comparisons of outcome results, and for the design of rigorous clinical trials in the area of SFRT. The results of well-conducted GRID radiation therapy studies have the potential to advance the clinical management of bulky and advanced tumors by providing improved treatment response, and to further develop our current radiobiology models and parameters of radiation therapy design.


Subject(s)
Neoplasms/radiotherapy , Photons , Radiosurgery/methods , Radiotherapy Dosage , Societies, Medical/organization & administration , Humans , Monte Carlo Method , Radiation Tolerance
15.
Radiat Res ; 194(5): 452-464, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33045077

ABSTRACT

The limited impact of treatments for COVID-19 has stimulated several phase 1 clinical trials of whole-lung low-dose radiation therapy (LDRT; 0.3-1.5 Gy) that are now progressing to phase 2 randomized trials worldwide. This novel but unconventional use of radiation to treat COVID-19 prompted the National Cancer Institute, National Council on Radiation Protection and Measurements and National Institute of Allergy and Infectious Diseases to convene a workshop involving a diverse group of experts in radiation oncology, radiobiology, virology, immunology, radiation protection and public health policy. The workshop was held to discuss the mechanistic underpinnings, rationale, and preclinical and emerging clinical studies, and to develop a general framework for use in clinical studies. Without refuting or endorsing LDRT as a treatment for COVID-19, the purpose of the workshop and this review is to provide guidance to clinicians and researchers who plan to conduct preclinical and clinical studies, given the limited available evidence on its safety and efficacy.


Subject(s)
Coronavirus Infections/radiotherapy , Pneumonia, Viral/radiotherapy , Radiation Dosage , Animals , COVID-19 , Clinical Trials as Topic , Humans , Pandemics , Radiotherapy Dosage , Risk , Translational Research, Biomedical
16.
Semin Radiat Oncol ; 30(2): 194-200, 2020 04.
Article in English | MEDLINE | ID: mdl-32381299

ABSTRACT

Radiation therapy benefits the majority of patients across the spectrum of cancer types. However, both local and distant tumor recurrences limit its clinical success. While departing from the established tenet of fractionation in clinical radiotherapy, ablative-intensity hypofractionated radiotherapy, especially stereotactic radiosurgery and stereotactic ablative radiotherapy, has emerged as an alternative paradigm achieving unprecedented rates of local tumor control. Direct tumor cell killing has been assumed to be the primary therapeutic mode of action of such ablative radiation. But with increasing recognition that tumor responses also depend on the immunostimulatory or immunosuppressive status of the tumor microenvironment, the immunologic effect of ablative radiotherapy is emerging as a key contributor to antitumor response. More recently, novel radiation modalities, such as spatially fractionated radiotherapy and ultrahigh dose rate FLASH irradiation, that venture even further from conventional paradigms have shown promise of increasing the therapeutic index of radiation therapy with the potential of immunomodulation. Here, we review the immunomodulatory impact of novel radiation therapy paradigms, heretofore considered radiobiological heresies, a deeper understanding of which is imperative to realizing fully their potential for more curative cancer therapy.


Subject(s)
Immunomodulation/immunology , Immunotherapy/trends , Neoplasms/immunology , Neoplasms/radiotherapy , Radiation Oncology/trends , Tumor Microenvironment/immunology , Tumor Microenvironment/radiation effects , Combined Modality Therapy , Humans , Radiation Dose Hypofractionation
17.
Int J Radiat Oncol Biol Phys ; 107(4): 766-778, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32298811

ABSTRACT

The National Cancer Institute's Radiation Research Program, in collaboration with the Radiosurgery Society, hosted a workshop called Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy on August 20 and 21, 2018 to bring together experts in experimental and clinical experience in these and related fields. Critically, the overall aims were to understand the biological underpinning of these emerging techniques and the technical/physical parameters that must be further defined to drive clinical practice through innovative biologically based clinical trials.


Subject(s)
Dose Fractionation, Radiation , Radiation Dosage , Radiotherapy/methods , Clinical Trials as Topic , Humans , Treatment Outcome
19.
Cancer Res ; 79(17): 4326-4330, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31481419

ABSTRACT

Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer deaths globally. The landscape of systemic therapy has recently changed, with six additional systemic agents either approved or awaiting approval for advanced stage HCC. While these agents have the potential to improve outcomes, a survival increase of 2-5 months remains poor and falls short of what has been achieved in many other solid tumor types. The roles of genomics, underlying cirrhosis, and optimal use of treatment strategies that include radiation, liver transplantation, and surgery remain unanswered. Here, we discuss new treatment opportunities, controversies, and future directions in managing HCC.


Subject(s)
Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Anilides/administration & dosage , Anilides/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Chemoembolization, Therapeutic , Clinical Trials as Topic , Humans , Immunotherapy/methods , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Molecular Targeted Therapy/methods , Mutation , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridines/administration & dosage , Pyridines/therapeutic use , Quinolines/therapeutic use , beta Catenin/genetics
20.
Cancer ; 125(16): 2732-2746, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31017664

ABSTRACT

Colorectal cancer (CRC) represents a major public health problem as the second leading cause of cancer-related mortality in the United States. Of an estimated 140,000 newly diagnosed CRC cases in 2018, roughly one-third of these patients will have a primary tumor located in the distal large bowel or rectum. The current standard-of-care approach includes curative-intent surgery, often after preoperative (neoadjuvant) radiotherapy (RT), to increase rates of tumor down-staging, clinical and pathologic response, as well as improving surgical resection quality. However, despite advancements in surgical techniques, as well as sharpened precision of dosimetry offered by contemporary RT delivery platforms, the oncology community continues to face challenges related to disease relapse. Ongoing investigations are aimed at testing novel radiosensitizing agents and treatments that might exploit the systemic antitumor effects of RT using immunotherapies. If successful, these treatments may usher in a new curative paradigm for rectal cancers, such that surgical interventions may be avoided. Importantly, this disease offers an opportunity to correlate matched paired biopsies, radiographic response, and molecular mechanisms of treatment sensitivity and resistance with clinical outcomes. Herein, the authors highlight the available evidence from preclinical models and early-phase studies, with an emphasis on promising developmental therapeutics undergoing prospective validation in larger scale clinical trials. This review by the National Cancer Institute's Radiation Research Program Colorectal Cancer Working Group provides an updated, comprehensive examination of the continuously evolving state of the science regarding radiosensitizer drug development in the curative treatment of CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/radiotherapy , Radiation-Sensitizing Agents/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Biological Products , HSP90 Heat-Shock Proteins/metabolism , Herpesvirus 1, Human , Humans , Immunotherapy/methods , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Molecular Targeted Therapy , National Cancer Institute (U.S.) , Protein Kinase C/antagonists & inhibitors , Pyrimidine Nucleosides/pharmacology , Radiation-Sensitizing Agents/pharmacology , United States
SELECTION OF CITATIONS
SEARCH DETAIL