Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
Small ; : e2400638, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804126

ABSTRACT

The lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (≈0.5 µm) and high modulus (≥19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system.

2.
Int J Biol Macromol ; 266(Pt 2): 131195, 2024 May.
Article in English | MEDLINE | ID: mdl-38565363

ABSTRACT

We fabricated hybrid nanoparticles consisting of organic semiconducting material with peptide sequence to reflect the target protein interaction. A phosphorescent OLED material, platinum octaethylporphyrin (PtOEP) was self-assembled by reprecipitation with the A17 peptide (YCAYYSPRHKTTF) selected as a probe ligand in order to recognize heat shock protein 70 (HSP70). The phosphorescence intensity of the PtOEP-A17 assembly was enhanced by 125 % after treatment with HSP70. The specificity of the protein interaction was confirmed in both solution and solid states of the PtOEP-A17 assembly against to BSA and nucleolin. We figured out that the phosphorescence lifetime of PtOEP-A17 assembly after exposed to HSP70 increased significantly to 153 ns from initial 115 ns. These simultaneous enhancements in phosphorescence and lifetime triggered by the specific protein interaction would open new applications of PtOEP, a representative material of light-emitting device fields.


Subject(s)
Peptides , Peptides/chemistry , Protein Binding , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , Luminescent Measurements , Porphyrins/chemistry , Platinum/chemistry , Serum Albumin, Bovine/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , Nucleolin , Animals
3.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38610526

ABSTRACT

Gold nanoparticles (AuNPs) are good candidates for donor material in energy transfer systems and can easily be functionalized with various ligands on the surface with Au-S bonding. Cyclodextrin (CD) forms inclusion complexes with fluorophores due to its unique structure for host-guest interaction. In this study, we fabricated ßCD-functionalized AuNPs using different lengths of thiol ligands and recognized cholesterol to confirm the energy-transfer-based turn-on fluorescence mechanism. AuNP-ßCD conjugated with various thiol ligands and quenched the fluorescein (Fl) dye, forming ßCD-Fl inclusion complexes. As the distance between AuNPs and ßCD decreased, the quenching efficiency became higher. The quenched fluorescence was recovered when the cholesterol replaced the Fl because of the stronger binding affinity of the cholesterol with ßCD. The efficiency of cholesterol recognition was also affected by the energy transfer effect because the shorter ßCD ligand had a higher fluorescence recovery. Furthermore, we fabricated a liposome with cholesterol embedded in the lipid bilayer membrane to mimic the cholesterol coexisting with lipids in human serum. These cellular cholesterols accelerated the replacement of the Fl molecules, resulting in a fluorescence recovery higher than that of pure lipid. These discoveries are expected to give guidance towards cholesterol sensors or energy-transfer-based biosensors using AuNPs.


Subject(s)
Gold , Metal Nanoparticles , Humans , Cholesterol , Energy Transfer , Fluorescein , Sulfhydryl Compounds
4.
Nat Commun ; 15(1): 908, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291035

ABSTRACT

Ice crystals at low temperatures exhibit structural polymorphs including hexagonal ice, cubic ice, or a hetero-crystalline mixture of the two phases. Despite the significant implications of structure-dependent roles of ice, mechanisms behind the growths of each polymorph have been difficult to access quantitatively. Using in-situ cryo-electron microscopy and computational ice-dynamics simulations, we directly observe crystalline ice growth in an amorphous ice film of nanoscale thickness, which exhibits three-dimensional ice nucleation and subsequent two-dimensional ice growth. We reveal that nanoscale ice crystals exhibit polymorph-dependent growth kinetics, while hetero-crystalline ice exhibits anisotropic growth, with accelerated growth occurring at the prismatic planes. Fast-growing facets are associated with low-density interfaces that possess higher surface energy, driving tetrahedral ordering of interfacial H2O molecules and accelerating ice growth. These findings, based on nanoscale observations, improve our understanding on early stages of ice formation and mechanistic roles of the ice interface.

5.
Nano Lett ; 23(20): 9500-9507, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37843112

ABSTRACT

This study reports the formation of self-assembled nanostructures with homo-oligopeptides consisting of amino acids (i.e., alanine, threonine, valine, and tyrosine), the resulting morphologies (i.e., spherical shape, layered structure, and wire structure) in aqueous solution, and their potential as ice growth inhibitors. Among the homo-oligopeptides investigated, an alanine homo-oligopeptide (n = 5) with a spherical nanostructure showed the highest ice recrystallization inhibition (IRI) activity without showing a burst ice growth property and with low ice nucleation activity. The presence of nanoscale self-assembled structures in the solution showed superior IRI activity compared to an amino acid monomer because of the higher binding affinity of structures on the growing ice crystal plane. Simulation results revealed that the presence of nanostructures induced a significant inhibition of ice growth and increased lifetime of hydrogen bonding compared with unassembled homo-oligopeptide. These results envision extraordinary performance for self-assembled nanostructures as a desirable and potent ice growth inhibitor.


Subject(s)
Antifreeze Proteins , Ice , Antifreeze Proteins/chemistry , Crystallization , Amino Acids , Alanine , Oligopeptides
6.
ACS Appl Mater Interfaces ; 15(24): 29406-29412, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37286381

ABSTRACT

The green organic semiconductor, tris-(8-hydroxyquinoline)aluminum (Alq3), was hybridized with DNA growing in the shape of hexagonal prismatic crystals. In this study, we applied hydrodynamic flow to the fabrication of Alq3 crystals doped with DNA molecules. The hydrodynamic flow in the Taylor-Couette reactor induced nanoscale pores in the Alq3 crystals, especially at the side part of the particles. The particles exhibited distinctly different photoluminescence emissions divided into three parts compared to common Alq3-DNA hybrid crystals. We named this particle a "three-photonic-unit". After treatment with complementary target DNA, the three-photonic-unit Alq3 particles doped with DNAs were found to emit depressed luminescence from side parts of the particles. This novel phenomenon would expand the technological value of these hybrid crystals with divided photoluminescence emissions toward a wider range of bio-photonic applications.

7.
ACS Macro Lett ; 12(5): 590-597, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37067502

ABSTRACT

Ring-opening alternating copolymerization (ROAC) of cyclic anhydrides and epoxides has emerged as a powerful strategy to produce degradable polyesters with a diverse array of structures from the combination of two distinct building blocks. In this work, we exploited the organocatalytic ROAC of cyclic anhydrides and a functional epoxide, t-butyl glycidoxy acetate, followed by acidic deprotection to access degradable polyesters with carboxylic acid pendants. To study the interplay between monomers, diglycolic anhydride and glutaric anhydride were used as cyclic anhydrides to prepare two polyesters. In particular, the effects of the oxygen heteroatom in the cyclic anhydrides on the properties of the carboxylic acid-containing polyesters were investigated. The introduction of the oxygen heteroatom into the cyclic anhydrides significantly influenced their thermal properties and pH-dependent self-association behavior in an aqueous solution. Furthermore, molecular dynamics simulations elucidate that the number and type of hydrogen bonds play a crucial role in the self-association behavior between the polymers both in the solution and bulk states. The findings of this study highlight the importance of the interplay between monomers in the design of functional polyesters with tunable properties.

8.
Adv Mater ; 35(12): e2209128, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36625665

ABSTRACT

The galvanostatic lithiation/sodiation voltage profiles of hard carbon anodes are simple, with a sloping drop followed by a plateau. However, a precise understanding of the corresponding redox sites and storage mechanisms is still elusive, which hinders further development in commercial applications. Here, a comprehensive comparison of the lithium- and sodium-ion storage behaviors of hard carbon is conducted, yielding the following key findings: 1) the sloping voltage section is presented by the lithium-ion intercalation in the graphitic lattices of hard carbons, whereas it mainly arises from the chemisorption of sodium ions on their inner surfaces constituting closed pores, even if the graphitic lattices are unoccupied; 2) the redox sites for the plateau capacities are the same as those for the closed pores regardless of the alkali ions; 3) the sodiation plateau capacities are mostly determined by the volume of the available closed pore, whereas the lithiation plateau capacities are primarily affected by the intercalation propensity; and 4) the intercalation preference and the plateau capacity have an inverse correlation. These findings from extensive characterizations and theoretical investigations provide a relatively clear elucidation of the electrochemical footprint of hard carbon anodes in relation to the redox mechanisms and storage sites for lithium and sodium ions, thereby providing a more rational design strategy for constructing better hard carbon anodes.

9.
Nat Commun ; 13(1): 6532, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319649

ABSTRACT

In this study, a new phenomenon describing the Janus effect on ice growth by hyperbranched polyglycerols, which can align the surrounding water molecules, has been identified. Even with an identical polyglycerol, we not only induced to inhibit ice growth and recrystallization, but also to promote the growth rate of ice that is more than twice that of pure water. By investigating the polymer architecture and population, we found that the stark difference in the generation of quasi-structured H2O molecules at the ice/water interface played a crucial role in the outcome of these opposite effects. Inhibition activity was induced when polymers at nearly fixed loci formed steady hydrogen bonding with the ice surface. However, the formation-and-dissociation dynamics of the interfacial hydrogen bonds, originating from and maintained by migrating polymers, resulted in an enhanced quasi-liquid layer that facilitated ice growth. Such ice growth activity is a unique property unseen in natural antifreeze proteins or their mimetic materials.


Subject(s)
Ice , Polymers , Hydrogen Bonding , Water/chemistry
10.
J Am Chem Soc ; 144(48): 21887-21896, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36367984

ABSTRACT

Passive water penetration across the cell membrane by osmotic diffusion is essential for the homeostasis of cell volume, in addition to the protein-assisted active transportation of water. Since membrane components can regulate water permeability, controlling compositional variation during the volume regulatory process is a prerequisite for investigating the underlying mechanisms of water permeation and related membrane dynamics. However, the lack of a viable in vitro membrane platform in hypertonic solutions impedes advanced knowledge of cell volume regulation processes, especially cholesterol-enriched lipid domains called lipid rafts. By reconstituting the liquid-ordered (Lo) domain as a likeness of lipid rafts, we verified suppressed water permeation across the Lo domains, which had yet to be confirmed with experimental demonstrations despite a simulation approach. With the help of direct transfer of the Lo domains from vesicles to supported lipid membranes, the biological roles of lipid composition in suppressed water translocation were experimentally confirmed. Additionally, the improvement in membrane stability under hypertonic conditions was demonstrated based on molecular dynamics simulations.


Subject(s)
Lipids , Water
11.
Nat Commun ; 13(1): 6193, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261659

ABSTRACT

We reveal the fundamental understanding of molecular doping of DNAs into organic semiconducting tris (8-hydroxyquinoline) aluminum (Alq3) crystals by varying types and numbers of purines and pyrimidines constituting DNA. Electrostatic, hydrogen bonding, and π-π stacking interactions between Alq3 and DNAs are the major factors affecting the molecular doping. Longer DNAs induce a higher degree of doping due to electrostatic interactions between phosphate backbone and Alq3. Among four bases, single thymine bases induce the multisite interactions of π-π stacking and hydrogen bonding with single Alq3, occurring within a probability of 4.37%. In contrast, single adenine bases form multisite interactions, within lower probability (1.93%), with two-neighboring Alq3. These multisite interactions facilitate the molecular doping into Alq3 particles compared to cytosines or guanines only forming π-π stacking. Thus, photoluminescence and optical waveguide phenomena of crystals were successfully tailored. This discovery should deepen our fundamental understanding of incorporating DNAs into organic semiconducting crystals.


Subject(s)
Nucleic Acids , Thymine , Aluminum , Purines , Adenine/chemistry , Pyrimidines , DNA , Oxyquinoline , Phosphates
12.
Sci Adv ; 8(43): eadd0185, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36306364

ABSTRACT

Cryopreservation of cells is essential for the conservation and cold chain of bioproducts and cell-based medicines. Here, we demonstrate that self-assembled DNA origami nanostructures have a substantial ability to protect cells undergoing freeze-thaw cycles; thereby, they can be used as cryoprotectant agents, because their nanoscale morphology and ice-philicity are tailored. In particular, a single-layered DNA origami nanopatch functionalized with antifreezing threonine peptides enabled the viability of HSC-3 cells to reach 56% after 1 month of cryopreservation, surpassing dimethyl sulfoxide, which produced 38% viability. It also exhibited minimal dependence on the cryopreservation period and freezing conditions. We attribute this outcome to the fact that the peptide-functionalized DNA nanopatches exert multisite actions for the retardation of ice growth in both intra- and extracellular regions and the protection of cell membranes during cryopreservation. This discovery is expected to deepen our fundamental understanding of cell survival under freezing environment and affect current cryopreservation technologies.


Subject(s)
Cryoprotective Agents , Ice , Cryoprotective Agents/pharmacology , Cryopreservation , Freezing , Cell Survival , Peptides/pharmacology , DNA
13.
Nano Converg ; 9(1): 42, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36178553

ABSTRACT

In this study, we developed a highly stable polymeric vesicle using a nanosilica-armor membrane to achieve a sustainable colorimetric/luminescent response. The silica armor can be grown directly as ~ 5 nm spherical nanoparticles on the surface of the diacetylene (DA) vesicle with liposomal structure. This can be accomplished via the modified Stöber reaction in pure water on a layer of amine linkers deposited on the vesicles. Once formed, the structural stability of the DA vesicles dramatically increased and remained so even in a dried powder form that could be stored for a period of approximately 6 months. Then, redispersed in water, the armored vesicles did not agglomerate because of the electric charge of the silica armor. After polymerization, the polydiacetylene (PDA) vesicles maintained an average of 87.4% their sensing capabilities compared to unstored vesicles. Furthermore, the silica membrane thickness can be controlled by reiteration of the electrostatic layer-by-layer approach and the direct hydrolysis of silica. As the number of silica armor membranes increases, the passage of the stimuli passing through the membranes becomes longer. Consequently, three layers of silica armor gave the PDA vesicles size-selective recognition to filter out external stimuli. These discoveries are expected to have large-scale effects in the chemo- and biosensor fields by applying protective layers to organic nanomaterials.

14.
Sensors (Basel) ; 22(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35957486

ABSTRACT

Non-specific binding (NSB) is one of the important issues in biosensing performance. Herein, we designed a strategy for removing non-specific binding including anti-mouse IgG antibody and bovine serum albumin (BSA) by utilizing anisotropic cadmium selenide tetrapods (CdSe TPs) in a vortex flow. The shear force on the tetrapod nanoparticles was increased by controlling the rotation rate of the vortex flow from 0 rpm to 1000 rpm. As a result, photoluminescence (PL) signals of fluorescein (FITC)-conjugated protein, anti-mouse IgG antibody-FITC and bovine serum albumin (BSA)-FITC, were reduced by 35% and 45%, respectively, indicating that NSB can be removed under vortex flow. In particular, simultaneous NSB removal and protein capture can be achieved even with mixture solutions of target antibodies and anti-mouse IgG antibodies by applying cyclic mode vortex flow on anisotropic CdSe TPs. These results demonstrate successfully that NSB can be diminished by rotating CdSe TPs to generate shear force under vortex flow. This study opens up new research protocols for utilization of anisotropic nanoparticles under vortex flow, which increases the feasibility of protein capture and non-specific proteins removal for biosensors.


Subject(s)
Cadmium Compounds , Selenium Compounds , Fluorescein-5-isothiocyanate , Immunoglobulin G , Serum Albumin, Bovine/metabolism
15.
ACS Nano ; 15(11): 18394-18402, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34605648

ABSTRACT

Hybrid nanostructures are promising for ultrasound-triggered drug delivery and treatment, called sonotheranostics. Structures based on plasmonic nanoparticles for photothermal-induced microbubble inflation for ultrasound imaging exist. However, they have limited therapeutic applications because of short microbubble lifetimes and limited contrast. Photochemistry-based sonotheranostics is an attractive alternative, but building near-infrared (NIR)-responsive echogenic nanostructures for deep tissue applications is challenging because photolysis requires high-energy (UV-visible) photons. Here, we report a photochemistry-based echogenic nanoparticle for in situ NIR-controlled ultrasound imaging and ultrasound-mediated drug delivery. Our nanoparticle has an upconversion nanoparticle core and an organic shell carrying gas generator molecules and drugs. The core converts low-energy NIR photons into ultraviolet emission for photolysis of the gas generator. Carbon dioxide gases generated in the tumor-penetrated nanoparticle inflate into microbubbles for sonotheranostics. Using different NIR laser power allows dual-modal upconversion luminescence planar imaging and cross-sectional ultrasonography. Low-frequency (10 MHz) ultrasound stimulated microbubble collapse, releasing drugs deep inside the tumor through cavitation-induced transport. We believe that the photoechogenic inflatable hierarchical nanostructure approach introduced here can have broad applications for image-guided multimodal theranostics.


Subject(s)
Nanoparticles , Neoplasms , Humans , Cross-Sectional Studies , Microbubbles , Nanoparticles/chemistry , Drug Delivery Systems
16.
Nat Commun ; 12(1): 3741, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145296

ABSTRACT

Despite technological advances in biomolecule detections, evaluation of molecular interactions via potentiometric devices under ion-enriched solutions has remained a long-standing problem. To avoid severe performance degradation of bioelectronics by ionic screening effects, we cover probe surfaces of field effect transistors with a single film of the supported lipid bilayer, and realize respectable potentiometric signals from receptor-ligand bindings irrespective of ionic strength of bulky solutions by placing an ion-free water layer underneath the supported lipid bilayer. High-energy X-ray reflectometry together with the circuit analysis and molecular dynamics simulation discovered biochemical findings that effective electrical signals dominantly originated from the sub-nanoscale conformational change of lipids in the course of receptor-ligand bindings. Beyond thorough analysis on the underlying mechanism at the molecular level, the proposed supported lipid bilayer-field effect transistor platform ensures the world-record level of sensitivity in molecular detection with excellent reproducibility regardless of molecular charges and environmental ionic conditions.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Lipid Bilayers/chemistry , Potentiometry/instrumentation , Potentiometry/methods , Cell Membrane/metabolism , Membrane Lipids/metabolism , Molecular Dynamics Simulation , Osmolar Concentration , Transistors, Electronic
17.
Nucleic Acids Res ; 49(11): 6596-6603, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34110422

ABSTRACT

DNA origami requires long scaffold DNA to be aligned with the guidance of short staple DNA strands. Scaffold DNA is produced in Escherichia coli as a form of the M13 bacteriophage by rolling circle amplification (RCA). This study shows that RCA can be reconfigured by reducing phage protein V (pV) expression, improving the production throughput of scaffold DNA by at least 5.66-fold. The change in pV expression was executed by modifying the untranslated region sequence and monitored using a reporter green fluorescence protein fused to pV. In a separate experiment, pV expression was controlled by an inducer. In both experiments, reduced pV expression was correlated with improved M13 bacteriophage production. High-cell-density cultivation was attempted for mass scaffold DNA production, and the produced scaffold DNA was successfully folded into a barrel shape without compromising structural quality. This result suggested that scaffold DNA production throughput can be significantly improved by reprogramming the RCA in E. coli.


Subject(s)
Bacteriophage M13/physiology , DNA, Single-Stranded/biosynthesis , DNA-Binding Proteins/genetics , Viral Proteins/genetics , 5' Untranslated Regions , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , DNA, Single-Stranded/ultrastructure , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Mutation , Viral Proteins/metabolism , Virus Replication
18.
Langmuir ; 37(19): 5886-5894, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33956457

ABSTRACT

Icephobic surfaces have gained immense attention owing to their significant roles in decreasing the energy consumption of refrigerators and in improving safety issues by preventing the formation of ice on them. Superhydrophobic surfaces incorporating micro- or nanoscale roughness and hydrophobic functional groups have been shown to prevent ice accumulation. Herein, we report a simple, low-cost, and solution-based one-step process for the production of superhydrophobic surfaces with three-dimensional (3D) self-assembled structures. The controlled hydrolysis and polycondensation of n-octadecyltrichlorosilane (OTS-Cl) in an acetone solution produced a highly uniform superhydrophobic surface on various substrates such as glass, metals, and polymers without the limitation of the surface curvature structure. The as-prepared 3D self-assembled surface exhibited a very high contact angle of 161.7° and a low contact hysteresis of 1.47°. The solvent type, H2O content in acetone, and carbon chain length of the silane compound were critical in the formation of self-assembled nanostructures. The thickness of the superhydrophobic 3D self-assembled structure could be varied by controlling the surface properties of the glass substrate. In addition, a novel octadecyl silica nanosquare plate structure was formed as an intermediate for the microlamella structure. The water drop impact experiments on the 3D self-assembled superhydrophobic glass substrates at low temperatures (T < -25 °C) showed that the as-prepared superhydrophobic glass possessed a high impalement threshold for water contact, resulting in excellent and stable icephobic properties. The preparation method proposed in this study is scalable and can be used on a flat glass surface or in a glass vial inside a glass tube. Moreover, it can be applied to various substrates such as metals and polyurethane surfaces with curvature. Therefore, the solution-based self-assembly method proposed in this study is a promising approach to produce superhydrophobic and icephobic surfaces on a wide range of substrates regardless of their structure and properties.

19.
ACS Nano ; 15(5): 9143-9153, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33988968

ABSTRACT

Despite their high potency, the widespread implementation of natural antimicrobial peptides is still challenging due to their low scalability and high hemolytic activities. Herein, we address these issues by employing a modular approach to mimic the key amino acid residues present in antimicrobial peptides, such as lysine, leucine, and serine, but on the highly biocompatible poly(ethylene glycol) (PEG) backbone. A series of these PEG-based peptides (PEGtides) were developed using functional epoxide monomers, corresponding to each key amino acid, with several possessing highly potent bactericidal activities and controlled selectivities, with respect to their hemolytic behavior. The critical role of the composition and the structure of the PEGtides in their selectivities was further supported by coarse-grained molecular dynamic simulations. This modular approach is anticipated to provide the design principles necessary for the future development of antimicrobial polymers.


Subject(s)
Anti-Infective Agents , Peptidomimetics , Anti-Infective Agents/pharmacology , Bacteria , Peptidomimetics/pharmacology , Polyethylene Glycols , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL