ABSTRACT
The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.
Subject(s)
Kefir , Stomach Ulcer , Mice , Animals , Male , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Interleukin-10 , NADPH Oxidase 2 , Tumor Necrosis Factor-alpha/adverse effects , Reactive Oxygen Species/adverse effects , Peptides/therapeutic useABSTRACT
In regions adjacent to the Brazilian Atlantic Forest, Virola oleifera (VO) resin extract has been popularly used for decades as a skin and mucosal healing agent. However, this antioxidant-rich resin has not yet been investigated in wound healing, whose physiological process might also be aggravated by oxidative stress-related diseases (e.g., hypertension/diabetes). Our aim, therefore, was to investigate whether VO resin presents healing effects through an innovative cream for topical applications. For this, adult male Wistar rats were divided into four groups. Then, four 15 mm excisions were performed on the shaved skin. All treatments were applied topically to the wound area daily. At the end of experiments (0, 3rd, and 10th days) macroscopic analysis of wound tissue contraction and histological analysis of inflammatory cell parameters were performed. The group treated with VO cream showed the best wound contraction (15%, p < 0.05) and reduced levels of lipid peroxidation and protein oxidation (118% and 110%, p < 0.05, respectively) compared to the control group. Our results demonstrated the healing capacity of a new formulation prepared with VO, which could be, at least in part, justified by antioxidant mechanisms that contribute to re-epithelialization, becoming a promising dermo-cosmetic for the treatment of wound healing.
ABSTRACT
BACKGROUND: This study investigated oxidative damage to bone marrow cells in the pathogenesis of renovascular hypertension (RH). METHODS: Male C57BL/6 J mice (10-week-old and ~23 g) were divided into two groups: Sham-operated and 2K1C, which has a stainless-steel clip placed around the left renal artery. After twenty-eight days, the animals were anesthetized for hemodynamic measurements and bone marrow cells isolation. The intracellular production of ROS, DNA damage, and DNA repair kinetics were evaluated. RESULTS: Our results show that RH increases HSCs ROS production and that the 2K1C group showed a significant reduction of HSCs in the G0/G1 phase, increased p53 expression, DNA fragmentation, low DNA repair capacity, and a higher percentage of apoptotic cells when compared with the Sham group. CONCLUSIONS: Our data imply that RH can compromise the hematopoiesis by increased oxidative stress leading to impaired DNA repair activity. Furthermore, this study provides new insights into the influence of hypertension on bone marrow homeostasis. This study showed for the first time that RH leads to oxidative damage, including genotoxic, to bone marrow cells. Thus, these findings provide new insights into the consequences of RH on bone marrow cells.
Subject(s)
Hypertension, Renovascular , Animals , DNA Damage , Hematopoietic Stem Cells , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Reactive Oxygen SpeciesABSTRACT
The benefits of kefir consumption are partially due to the rich composition of bioactive molecules released from its fermentation. Angiotensin-converting enzyme (ACE) inhibitors are bioactive molecules with potential use in the treatment or prevention of hypertension, heart failure, and myocardial infarction. Here, the in vivo actions of the Kef-1 peptide, an ACE inhibitor derived from kefir, were evaluated in an angiotensin II-dependent hypertension model. The Kef-1 peptide showed a potential anti-hypertensive effect. Additionally, Kef-1 exhibited systemic antioxidant and anti-inflammatory activities. In smooth muscle cells (SMCs), the Kef-1 peptide decreased ROS production through the reduced participation of NADPH oxidase and mitochondria. The aorta of 2K1C mice treated with Kef-1 showed lesser wall-thickening and partial restoration of the endothelial structure. In conclusion, these novel findings highlight the in vivo biological potential of this peptide demonstrating that Kef-1 may be a relevant nutraceutical treatment for cardiovascular diseases.
Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Inflammation/metabolism , Kefir , Oxidative Stress/drug effects , Peptides/pharmacology , Animals , Antihypertensive Agents/pharmacology , Aorta/drug effects , Aorta/pathology , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytologyABSTRACT
INTRODUCTION: Rasmussen encephalitis (RE) is a rare inflammatory disease, characterized by unilateral hemispheric atrophy, focal intractable seizures, progressive hemiparesis, and neurological deficits. CASE REPORT: The patient is a young man under pharmacotherapy for epilepsy, exhibiting classical abnormal movements, which are consider typical hallmarks of RE. During clinical care sessions, he presented many episodes of tonic-clonic seizures involving sudden loss of consciousness followed by a post-ictal phase with weakness and interaction difficulty. During the kefir supplementation, the patient presented only short-term absence seizures, quickly returning to activities. Additionally, he presented cognitive and language improvement, being more responsive to commands. The daily diary control of patient's mother and caregiver at school reported an impressive reduction in number and severity of seizures, becoming less aggressive and more involved in school activities. The serum biochemical markers showed that kefir administration caused a significant decrease of pro-inflammatory and a simultaneous increase of anti-inflammatory cytokine levels. In parallel, after treatment, this probiotic reduced reactive oxygen species levels, increased NO bioavailability, revealing antiapoptotic and antigenotoxic effects. Regarding the microbiological analysis, kefir increased Lactobacillus and Bifidobacterium species. CONCLUSION: To our knowledge, this is the first case reporting remarkable beneficial effects of the probiotic kefir in RE. This case report strongly suggests kefir supplementation as a potential and safe-effective adjuvant therapeutic strategy in the control and treatment of RE.
Subject(s)
Encephalitis , Kefir , Probiotics , Male , Humans , Encephalitis/complications , Seizures , Probiotics/therapeutic useABSTRACT
Sildenafil (SIL) has potential as an interesting gastroprotective drug. However, the pathways of its protective effect still needs to be clarified, and its use as a potential gastroprotective agent validated. This study aims to evaluate the effects of SIL via modulation of oxidative stress in a NSAID-induced gastric lesion model. Male Swiss mice were divided into six groups: control (CON, water), nonsteroidal anti-inflammatory drug (NSAID, water), proton pump inhibitor (PPI, 30 mg/kg of lansoprazole), SIL 5 (5 mg/kg), SIL 25 (25 mg/kg) and SIL 50 (50 mg/kg). The animals were treated by gavage (a single dose) after 24 hours of fasting, and gastric lesions were performed after 30 minutes, with indomethacin (40 mg/kg, by gavage). After 6h, the animals were killed and the stomach was removed to evaluate reactive oxygen species (ROS) production, oxidation of macromolecules, quantification of antioxidant enzymes, DNA fragmentation, apoptosis and macroscopic and histologic analysis of gastric lesions. SIL exerts a dose-dependent gastroprotective effect against NSAID-induced mucosal injury, also reducing cytoplasmic levels of ROS and consequent oxidative damage to macromolecules. In addition, SIL increases nitric oxide bioavailability, antioxidant enzymes and gastric cellular viability, as well as restoring important factors involved in gastroprotection. Our results demonstrate that different doses of SIL prevent indomethacin-induced gastric ulcer in mice via different, but complementary antioxidant, antigenotoxic and antiapoptotic mechanisms.
Subject(s)
Antioxidants , Stomach Ulcer , Animals , Anti-Inflammatory Agents, Non-Steroidal , Male , Mice , Sildenafil CitrateABSTRACT
AIMS: Hypertension is a relevant sex and sex hormones-dependent risk factor where the cardiovascular and renal health of the population are concerned. Men experience greater losses of renal function (RF) than women, but the mechanisms remain somewhat unclear. Our goal was to evaluate the relationship between oxidative stress (OS), angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activities and RF in male and female SHR. MAIN METHODS: Twelve-week-old spontaneously hypertensive rats (SHR) were submitted to either castration or SHAM surgery and divided into 4 groups, SHAM or Castrated (CAST) males or females. After 51 days we evaluated RF (inulin and sodium para-aminohippurate), ACE and ACE2 activities (fluorimetry), OS (flow cytometry), collagen deposition (picrosirius red) and protein expression (western blot). KEY FINDINGS: Males presented lower RF than females and castration impaired this parameter in both groups. Sexual dimorphism was not observed regarding OS and inflammation; however, castration increased this parameter more severely in males than in females. SHAM males exhibited higher collagen deposition than females, though castration increased it in both sexes, eliminating the difference. We found sexual dimorphism regarding renal ACE and ACE2 activities, which were lower in males than in females. Although castration did not alter ACE activity, it reduced ACE2 activity in females and increased it in males. SIGNIFICANCE: These results indicate that sex hormones affect RF in SHR. As alterations in the oxidative system were capable of promoting podocyte injury, inflammation, and collagen deposition, we put forward that these effects are differently modulated by ACE and ACE2.
Subject(s)
Gonadal Steroid Hormones/metabolism , Kidney Diseases/etiology , Oxidative Stress , Peptidyl-Dipeptidase A/metabolism , Rats, Inbred SHR/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Blotting, Western , Collagen/metabolism , Female , Kidney/enzymology , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Male , Orchiectomy , Ovariectomy , Oxidative Stress/physiology , Rats , Rats, Inbred SHR/physiology , Reactive Oxygen Species/metabolism , Sex FactorsABSTRACT
BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia in elderly patients. Recently, several studies have shown that inflammation and oxidative stress precede the cardinal neuropathological manifestations of AD. In view of the proven antioxidant effects of probiotics, we proposed that continuous dietary supplementation with milk fermented with kefir grains might improve cognitive and metabolic and/or cellular disorders in the AD patients. METHODS: This study was designed as an uncontrolled clinical investigation to test the effects of probiotic-fermented milk supplementation (2 mL/kg/daily) for 90 days in AD patients exhibiting cognitive deficit. Cognitive assessment, cytokine expression, systemic oxidative stress levels, and blood cell damage biomarkers were evaluated before (T0) and after (T90) kefir synbiotic supplementation. RESULTS: When the patients were challenged to solve 8 classical tests, the majority exhibit a marked improvement in memory, visual-spatial/abstraction abilities, and executive/language functions. At the end of the treatment, the cytometric analysis showed an absolute/relative decrease in several cytokine markers of inflammation and oxidative stress markers (·O2 -, H2O2, and ONOO-, ~30%) accompanied by an increase in NO bioavailability (100%). In agreement with the above findings by using the same technique, we observed in a similar magnitude an improvement of serum protein oxidation, mitochondrial dysfunction, DNA damage/repair, and apoptosis. CONCLUSION: In conclusion, we demonstrated that kefir improves cognitive deficits, which seems to be linked with three important factors of the AD-systemic inflammation, oxidative stress, and blood cell damage-and may be a promising adjuvant therapy against the AD progression.
Subject(s)
Alzheimer Disease/pathology , Oxidative Stress , Synbiotics , Aged , Alzheimer Disease/physiopathology , Apoptosis , Biomarkers/metabolism , Cell Cycle Checkpoints , Cognition , Cytokines/metabolism , DNA Fragmentation , Female , Humans , Kefir , Male , Membrane Potential, Mitochondrial , Poly(ADP-ribose) Polymerases/metabolism , Tumor Suppressor Protein p53/metabolismABSTRACT
The mechanisms responsible for cardiovascular and neurodegenerative diseases have been the focus of experimental and clinical studies for decades. The relationship between the gut microbiota and the organs and system tissues represents the research field that has generated the highest number of publications. Homeostasis of the gut microbiota is important to the host because it promotes maturation of the autoimmune system, harmonic integrative functions of the brain, and the normal function of organs related to cardiovascular and metabolic systems. On the other hand, when a gut microbiota dysbiosis occurs, the target organs become vulnerable to the onset or aggravation of complex chronic conditions, such as cardiovascular (e.g., arterial hypertension) and neurodegenerative (e.g., dementia) diseases. In the present brief review, we discuss the main mechanisms involved in those disturbances and the promising beneficial effects that have been revealed using functional food (nutraceuticals), such as the traditional probiotic Kefir. Here, we highlight the current scientific advances, concerns, and limitations about the use of this nutraceutical. The focus of our discussion is the endothelial dysfunction that accompanies hypertension and the neurovascular dysfunction that characterizes ageing-related dementia in patients suffering from Alzheimer's disease.
Subject(s)
Gastrointestinal Microbiome , Kefir , Neurodegenerative Diseases , Probiotics , Dysbiosis , Humans , Neurodegenerative Diseases/drug therapyABSTRACT
Arterial hypertension is a condition associated with endothelial dysfunction, accompanied by an imbalance in the production of reactive oxygen species (ROS) and NO. The aim of this study was to investigate and elucidate the possible mechanisms of sildenafil, a selective phosphodiesterase-5 inhibitor, actions on endothelial function in aortas from spontaneously hypertensive rats (SHR). SHR treated with sildenafil (40â¯mg/kg/day, p.o., 3â¯weeks) were compared to untreated SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and vascular reactivity was determined in isolated rat aortic rings. Circulating endothelial progenitor cells and systemic ROS were measured by flow cytometry. Plasmatic total antioxidant capacity, NO production and aorta lipid peroxidation were determined by spectrophotometry. Scanning electron microscopy was used for structural analysis of the endothelial surface. Sildenafil reduced high SBP and partially restored the vasodilator response to acetylcholine and sodium nitroprusside in SHR aortic rings. Using selective inhibitors, our experiments revealed an augmented participation of NO, with a simultaneous decrease of oxidative stress and of cyclooxygenase-1 (COX-1)-derived prostanoids contribution in the endothelium-dependent vasodilation in sildenafil-treated SHR compared to non-treated SHR. Also, the relaxant responses to sildenafil and 8-Br-cGMP were normalized in sildenafil-treated SHR and sildenafil restored the pro-oxidant/antioxidant balance and the endothelial architecture. In conclusion, sildenafil reverses endothelial dysfunction in SHR by improving vascular relaxation to acetylcholine with increased NO bioavailability, reducing the oxidative stress and COX-1 prostanoids, and improving cGMP/PKG signaling. Also, sildenafil reduces structural endothelial damage. Thus, sildenafil is a promising novel pharmacologic strategy to treat endothelial dysfunction in hypertensive states reinforcing its potential role as adjuvant in the pharmacotherapy of cardiovascular diseases.
Subject(s)
Antihypertensive Agents/pharmacology , Aorta/drug effects , Blood Pressure/drug effects , Cyclooxygenase 1/metabolism , Endothelium, Vascular/drug effects , Hypertension/drug therapy , Membrane Proteins/metabolism , NADP/metabolism , Nitric Oxide/metabolism , Sildenafil Citrate/pharmacology , Vasodilator Agents/pharmacology , Animals , Aorta/enzymology , Aorta/physiopathology , Aorta/ultrastructure , Cyclic GMP/metabolism , Disease Models, Animal , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/ultrastructure , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiopathology , Endothelium, Vascular/ultrastructure , Hypertension/enzymology , Hypertension/pathology , Hypertension/physiopathology , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Phosphodiesterase 5 Inhibitors/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , Vasodilation/drug effectsABSTRACT
PURPOSE: The effects of medium to long-term continuous positive airway pressure (CPAP) or physical activity in decreasing oxidative stress, inflammatory, and cell-free DNA markers in obstructive sleep apnea (OSA) have been explored. Here we evaluate oxidative stress markers (TBARS, AOPP, SOD), proinflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-8), anti-inflammatory cytokines (IL-4, IL-10), and cell-free DNA levels before and after 8-week CPAP treatment or moderate-intensity aerobic training in moderate to severe OSA. METHODS: Thirty-nine patients diagnosed with OSA were randomly divided into CPAP (N = 18), with or without humidifier, and exercise groups (N = 21). Excessive daytime sleepiness and sleep quality were assessed by the Epworth Sleepiness Scale and the Pittsburgh questionnaire, respectively. Biomarkers for lipid and protein oxidation, pro and anti-inflammatory cytokines, and cell-free DNA were quantified in blood samples, before and after 8 weeks of both treatments. RESULTS: After 8 weeks of either CPAP or exercise, no significant differences were observed in the levels of cell-free DNA, oxidative stress, and inflammation markers, except for an increase in AOPP and IL-17A levels in individuals who went through CPAP, which were higher when the CPAP device was used without the humidifier. We have also observed that CPAP significantly decreased the Pittsburgh scores and improved sleep efficiency and hours of sleep, while ESS scores remained unaffected. CONCLUSIONS: Short-term treatment for OSA, be it CPAP therapy or moderate-intensity aerobic exercise, was not sufficient to alter either the oxidative stress and inflammatory profiles or the cell-free DNA levels of moderate to severe OSA patients. Short-term CPAP did, however, improve self-reported sleep quality.
Subject(s)
Continuous Positive Airway Pressure , Exercise Therapy , Inflammation/blood , Oxidative Stress/physiology , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/therapy , Adult , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Treatment OutcomeABSTRACT
BACKGROUND: New evidence demonstrates that aging and dyslipidemia are closely associated with oxidative stress, DNA damage and apoptosis in some cells and extravascular tissues. However, in monocytes, which are naturally involved in progression and/or resolution of plaque in atherosclerosis, this concurrence has not yet been fully investigated. In this study, we evaluated the influence of aging and hypercholesterolemia on serum pro-inflammatory cytokines, oxidative stress, DNA damage and apoptosis in monocytes from apolipoprotein E-deficient (apoE-/-) mice compared with age-matched wild-type C57BL/6 (WT) mice. Experiments were performed in young (2-months) and in old (18-months) male wild-type (WT) and apoE-/- mice. RESULTS: Besides the expected differences in serum lipid profile and plaque formation, we observed that atherosclerotic mice exhibited a significant increase in monocytosis and in serum levels of pro-inflammatory cytokines compared to WT mice. Moreover, it was observed that the overproduction of ROS, led to an increased DNA fragmentation and, consequently, apoptosis in monocytes from normocholesterolemic old mice, which was aggravated in age-matched atherosclerotic mice. CONCLUSIONS: In this study, we demonstrate that a pro-inflammatory systemic status is associated with an impairment of functionality of monocytes during aging and that these parameters are fundamental extra-arterial contributors to the aggravation of atherosclerosis. The present data open new avenues for the development of future strategies with the purpose of treating atherosclerosis.
Subject(s)
Aging/physiology , Apoptosis/physiology , Atherosclerosis/blood , DNA Damage/physiology , Monocytes/pathology , Oxidative Stress/physiology , Reactive Oxygen Species/blood , Aging/blood , Animals , Atherosclerosis/physiopathology , Biomarkers/blood , Disease Models, Animal , Hyperlipidemias/blood , Hyperlipidemias/physiopathology , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/physiopathologyABSTRACT
BACKGROUND: Stroke is a major cause of severe and long-term disability in adult individuals. Treatment of this disease is limited by the narrow therapeutic window in which intervention is crucial. An alternative therapy for stroke could be cellular growth factors, which participate in several pathways that mediate neuronal cell death. METHODS: We evaluated the neuroprotective ability of different doses of granulocyte colonystimulating factor (G-CSF; 5, 50 and 100 µg/kg/day) in the mouse model of global cerebral ischemia induced by bilateral occlusion of the common carotid arteries for 80 minutes. The control group received vehicle (5% glucose solution) and the treated group was administered with G-CSF at two postsurgery time-points: immediately after and 24 hours after. Subsequently, muscle strength, leukocyte count, infarcted cortical area, and apoptosis/TUNEL were evaluated. RESULTS: The global ischemia promoted an impairment of the strength (16%) and a cerebral infarction (0.437±0.08 cm2) which were accompanied by apoptosis evaluated by TUNEL in control mice. In mice treated with G-CSF the strength function was maintained, the infarcted area (~70%) and apoptosis were decreased in a similar magnitude in all treated groups. Accordingly, the cytokine activities were confirmed by blood leukocyte count that was increased approximately 2-fold than that observed in the control group. CONCLUSION: The results indicate a neuroprotective effect of G-CSF, even in small doses, in mice subjected to global cerebral ischemia, thereby reducing the neurofunctional impairment caused by stroke, when considering the maintenance of muscle strength in the treated animals.
Subject(s)
Brain Ischemia/drug therapy , Cerebral Infarction/drug therapy , Granulocyte Colony-Stimulating Factor/therapeutic use , Muscle Strength/drug effects , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Animals , Apoptosis/drug effects , Disease Models, Animal , Male , MiceABSTRACT
BACKGROUND: New evidence demonstrates that aging and dyslipidemia are closely associated with oxidative stress, DNA damage and apoptosis in some cells and extravascular tissues. However, in monocytes, which are naturally involved in progression and/or resolution of plaque in atherosclerosis, this concurrence has not yet been fully investigated. In this study, we evaluated the influence of aging and hypercholesterolemia on serum pro-inflammatory cytokines, oxidative stress, DNA damage and apoptosis in monocytes from apolipoprotein E-deficient (apoE-/-) mice compared with age-matched wild-type C57BL/6 (WT) mice. Experiments were performed in young (2-months) and in old (18-months) male wild-type (WT) and apoE-/- mice. RESULTS: Besides the expected differences in serum lipid profile and plaque formation, we observed that atherosclerotic mice exhibited a significant increase in monocytosis and in serum levels of pro-inflammatory cytokines compared to WT mice. Moreover, it was observed that the overproduction of ROS, led to an increased DNA fragmentation and, consequently, apoptosis in monocytes from normocholesterolemic old mice, which was aggravated in age-matched atherosclerotic mice. CONCLUSIONS: In this study, we demonstrate that a pro-inflammatory systemic status is associated with an impairment of functionality of monocytes during aging and that these parameters are fundamental extra-arterial contributors to the aggravation of atherosclerosis. The present data open new avenues for the development of future strategies with the purpose of treating atherosclerosis.