Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article En | MEDLINE | ID: mdl-36498857

Aurora kinase B (AKB) is a crucial signaling kinase with an important role in cell division. Therefore, inhibition of AKB is an attractive approach to the treatment of cancer. In the present work, extensive quantitative structure-activity relationships (QSAR) analysis has been performed using a set of 561 structurally diverse aurora kinase B inhibitors. The Organization for Economic Cooperation and Development (OECD) guidelines were used to develop a QSAR model that has high statistical performance (R2tr = 0.815, Q2LMO = 0.808, R2ex = 0.814, CCCex = 0.899). The seven-variable-based newly developed QSAR model has an excellent balance of external predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The QSAR analysis successfully identifies not only the visible pharmacophoric features but also the hidden features. The analysis indicates that the lipophilic and polar groups-especially the H-bond capable groups-must be present at a specific distance from each other. Moreover, the ring nitrogen and ring carbon atoms play important roles in determining the inhibitory activity for AKB. The analysis effectively captures reported as well as unreported pharmacophoric features. The results of the present analysis are also supported by the reported crystal structures of inhibitors bound to AKB.


Pharmacophore , Quantitative Structure-Activity Relationship , Aurora Kinase B , Molecular Docking Simulation
2.
Aquat Toxicol ; 239: 105962, 2021 Oct.
Article En | MEDLINE | ID: mdl-34525418

In the present work, QSTR modeling was conducted for microalga Pseudokirchneriella subcapitata using a data set of 271 molecules belonging to different types of chemical classes for the prediction of EC50 for 72 hr based assays. The balanced QSTR model encompasses seven easily interpretable molecular descriptors and possesses statistical robustness with high predictive ability. This Genetic Algorithm Multi-linear regression (GA-MLR) model was subjected to internal validation, Y-randomization test, applicability domain analysis, and external validation as per the recommended OECD guidelines. The newly developed model fulfilled the threshold values for more than 20 recommended validation parameters including R2 = 0.72, Q2LOO = 0.70, etc. The developed QSTR model was successful in identifying the type of hybridization or specific type of atoms of previously reported and newer structural alerts. Thus, the model could be useful for data gap filling and expanding mechanistic interpretation of toxicity for different chemicals.


Chlorophyceae , Water Pollutants, Chemical , Algorithms , Linear Models , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/toxicity
3.
Molecules ; 26(7)2021 Mar 24.
Article En | MEDLINE | ID: mdl-33805223

N-myristoyltransferase (NMT) is an important eukaryotic monomeric enzyme which has emerged as an attractive target for developing a drug for cancer, leishmaniasis, ischemia-reperfusion injury, malaria, inflammation, etc. In the present work, statistically robust machine leaning models (QSAR (Quantitative Structure-Activity Relationship) approach) for Human NMT (Hs-NMT) inhibitory has been performed for a dataset of 309 Nitrogen heterocycles screened for NMT inhibitory activity. Hundreds of QSAR models were derived. Of these, the model 1 and 2 were chosen as they not only fulfil the recommended values for a good number of validation parameters (e.g., R2 = 0.77-0.79, Q2LMO = 0.75-0.76, CCCex = 0.86-0.87, Q2-F3 = 0.74-0.76, etc.) but also provide useful insights into the structural features that sway the Hs-NMT inhibitory activity of Nitrogen heterocycles. That is, they have an acceptable equipoise of descriptive and predictive qualities as per Organisation for Economic Co-operation and Development (OECD) guidelines. The developed QSAR models identified a good number of molecular descriptors like solvent accessible surface area of all atoms having specific partial charge, absolute surface area of Carbon atoms, etc. as important features to be considered in future optimizations. In addition, pharmacophore modeling has been performed to get additional insight into the pharmacophoric features, which provided additional results.


Acyltransferases , Drug Design , Enzyme Inhibitors , Heterocyclic Compounds , Models, Molecular , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Quantitative Structure-Activity Relationship
4.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 13.
Article En | MEDLINE | ID: mdl-33924395

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole-indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.

5.
Chemometr Intell Lab Syst ; 206: 104172, 2020 Nov 15.
Article En | MEDLINE | ID: mdl-33518858

In the present work, an extensive QSAR (Quantitative Structure Activity Relationships) analysis of a series of peptide-type SARS-CoV main protease (MPro) inhibitors following the OECD guidelines has been accomplished. The analysis was aimed to identify salient and concealed structural features that govern the MPro inhibitory activity of peptide-type compounds. The QSAR analysis is based on a dataset of sixty-two peptide-type compounds which resulted in the generation of statistically robust and highly predictive multiple models. All the developed models were validated extensively and satisfy the threshold values for many statistical parameters (for e.g. R2 â€‹= â€‹0.80-0.82, Q2 loo â€‹= â€‹0.74-0.77, Q 2 LMO  â€‹= â€‹0.66-0.67). The developed QSAR models identified number of sp2 hybridized Oxygen atoms within seven bonds from aromatic Carbon atoms, the presence of Carbon and Nitrogen atoms at a topological distance of 3 and other interrelations of atom pairs as important pharmacophoric features. Hence, the present QSAR models have a good balance of Qualitative (Descriptive QSARs) and Quantitative (Predictive QSARs) approaches, therefore useful for future modifications of peptide-type compounds for anti- SARS-CoV activity.

6.
Chem Sci ; 10(7): 1971-1975, 2019 Feb 21.
Article En | MEDLINE | ID: mdl-30881626

Thiopeptides are a class of potent antibiotics with promising therapeutic potential. We developed a novel Mo(vi)-oxide/picolinic acid catalyst for the cyclodehydration of cysteine peptides to form thiazoline heterocycles. With this powerful tool in hand, we completed the total syntheses of two representative thiopeptide antibiotics: micrococcin P1 and thiocillin I. These two concise syntheses (15 steps, longest linear sequence) feature a C-H activation strategy to install the trisubstituted pyridine core and thiazole groups. The synthetic material displays promising antimicrobial properties measured against a series of Gram-positive bacteria.

7.
Tetrahedron Lett ; 55(37): 5191-5194, 2014 Sep 10.
Article En | MEDLINE | ID: mdl-25197148

Aetheramides A and B are very potent anti-HIV agents. An enantioselective synthesis of a MEM-protected aetheramide A derivative is described. The synthesis was accomplished in a convergent and stereoselective manner. The key reactions involved asymmetric dihydroxylation, asymmetric allylation, asymmetric syn-aldol reactions and asymmetric hydrogenation.

...