Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; : 107630, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098526

ABSTRACT

CD22 (also known as Siglec-2) is an inhibitory receptor expressed in B cells. CD22 specifically recognizes α2,6 sialic acid, and interacts with α2,6 sialylated membrane proteins expressed on the same cell (cis-ligands) and those derived from outside of the cell (trans-ligands). Previously, CD22 cis-ligands were shown to regulate the activity of CD22, thereby regulating both BCR ligation-induced signaling and low level "tonic" signaling in the absence of BCR ligation that regulates survival and differentiation of B cells. Mouse CD22 prefers Neu5Gc to Neu5Ac thereby binding to α2,6-linked Neu5Gc with high affinity. Although human CD22 binds to a distinct α2,6 sialylated glycan with high affinity, expression of high affinity ligands is regulated in a conserved and stringent manner. However, how high vs. low affinity CD22 ligands regulate B cells is poorly understood. Here we demonstrate that interaction of CD22 with the endogenous ligands enhances BCR ligation-induced signaling but reduces tonic signaling in Cmah-/- mouse B cells deficient in Neu5Gc as well as wild-type B cells. Moreover, Cmah-/- B cells do not show alterations in the phenotypes correlated to tonic signaling. These results indicate that low affinity interaction of the CD22 cis-ligands with CD22 is sufficient for the regulation of B cell signaling, and suggest that expression of high affinity CD22 ligands might be involved in the regulation of B cells by competing the binding of CD22 with exogenous trans-ligands of CD22.

2.
J Autoimmun ; 146: 103245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754236

ABSTRACT

B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.


Subject(s)
Antigens, CD , Antigens, Differentiation, B-Lymphocyte , Autoantibodies , Autoantigens , B-Lymphocytes , Lupus Erythematosus, Systemic , Receptors, Antigen, B-Cell , Ribosomes , Signal Transduction , Animals , Ribosomes/metabolism , Ribosomes/immunology , Mice , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Autoantibodies/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Antigens, Differentiation, B-Lymphocyte/immunology , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, CD/metabolism , Antigens, CD/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Signal Transduction/immunology , Autoantigens/immunology , Mice, Knockout , Lymphocyte Activation/immunology , Cell Proliferation , Immune Tolerance , Humans
SELECTION OF CITATIONS
SEARCH DETAIL