Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18858, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914759

ABSTRACT

This study compared the expression of TP53 in lymphocytes from malignant melanoma (MM) patients with positive sentinel nodes to healthy controls (HCs) following exposure to various doses of UVA radiation. The Lymphocyte Genome Sensitivity (LGS) assay indicated significant differences in DNA damage in lymphocytes between MM patients and HCs. qPCR data demonstrated an overall 3.4-fold increase in TP53 expression in lymphocytes from MM patients compared to healthy controls, following treatment with 0.5 mW/cm2 UVA radiation. Western blotting confirmed that p53 expression was increased in MM lymphocytes following UVA exposure compared to healthy individuals. Genome transcriptome profiling data displayed differences in gene expression between UVA-treated lymphocytes from MM patients and HCs. Peripheral lymphocytes from MM patients are more susceptible to the genotoxic effects of UVA compared to healthy individuals. Our previous studies showed that UVA exposure of various intensities caused significant differences in the levels of DNA damage between lymphocytes from cancer patients compared to HCs through the LGS assay. The present study's results provide further credibility to the LGS assay as a screening test for cancer detection. Peripheral lymphocytes could be a promising blood biopsy biomarker for staging of carcinomas and prevention of carcinoma progression at early stages.


Subject(s)
Melanoma , Tumor Suppressor Protein p53 , Humans , Comet Assay , Tumor Suppressor Protein p53/genetics , Lymphocytes/pathology , Melanoma/genetics , Melanoma/pathology , DNA Damage , Ultraviolet Rays/adverse effects , Gene Expression Profiling , Melanoma, Cutaneous Malignant
2.
J Cell Mol Med ; 27(2): 222-231, 2023 01.
Article in English | MEDLINE | ID: mdl-36545841

ABSTRACT

Incidence of Malignant Melanoma has become the 5th in the UK. To date, the major anticancer therapeutics include cell therapy, immunotherapy, gene therapy and nanotechnology-based strategies. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. In the present in vitro study, the antitumour effect of cord blood stem cell (CBSC)-derived exosomes was confirmed by the CCK-8 assay (p < 0.05) on CHL-1 melanoma cells and improve the repair mechanism on lymphocytes from melanoma patients. Importantly, no significant effect was observed in healthy lymphocytes when treated with the exosome concentrations at 24, 48 and 72 h. Comet assay results (OTM and %Tail DNA) demonstrated that the optimal exosome concentration showed a significant impact (p < 0.05) in lymphocytes from melanoma patients whilst causing no significant DNA damage in lymphocytes of healthy volunteers was 300 µg/ml. Similarly, the Comet assay results depicted significant DNA damage in a melanoma cell line (CHL-1 cells) treated with CBSC-derived exosomes, both the cytotoxicity of CHL-1 cells treated with CBSC-derived exosomes exhibited a significant time-dependent decrease in cell survival. Sequencing analysis of CBSC exosomes showed the presence of the let-7 family of miRNAs, including let-7a-5p, let-7b-5p, let-7c-5p, let-7d-3p, let-7d-5p and two novel miRNAs. The potency of CBSC exosomes in inhibiting cancer progression in lymphocytes from melanoma patients and CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it a potential candidate as an anticancer therapy.


Subject(s)
Exosomes , Extracellular Vesicles , Melanoma , MicroRNAs , Humans , Exosomes/metabolism , Fetal Blood/metabolism , MicroRNAs/metabolism , Melanoma/genetics , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Melanoma, Cutaneous Malignant
3.
J Mol Endocrinol ; 69(2): 299-313, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35521765

ABSTRACT

During the development of type 1 diabetes, interferons (IFN) are elaborated from islet-infiltrating immune cells and/or from virally infected ß-cells. They act via specific receptors to increase, acutely, the phosphorylation of the transcription factors STAT1 and 2. However, the longer-term impacts of chronic IFN stimulation are poorly understood and were investigated in the current study. Human EndoC-ßH1 cells were treated with IFNα, IFNγ or IFNλ either acutely (<2 h) or chronically (≥24 h) and STAT phosphorylation, expression and activity were assessed by Western blotting and transcriptional reporter assays. Exposure of ß-cells to IFNα or IFNλ induced a swift increase in the phosphorylation of both STAT1 and STAT2, whereas IFNγ increased only pSTAT1. Over more extended periods (≥24 h), STAT phosphorylation declined but STAT1 and STAT2 expression were enhanced in a sustained manner. All IFNs stimulated ISRE transcriptional activity (but with different time courses), whereas GAS activity was responsive only to IFNγ. The re-addition of a second bolus of IFNα, 24 h after an initial dose, failed to cause renewed STAT1/2 phosphorylation. By contrast, when IFNγ was added 24 h after exposure to IFNα, rapid STAT1 phosphorylation was re-initiated. Exposure of ß-cells to IFNs leads to rapid, transient, STAT phosphorylation and to slower and more sustained increases in total STAT1/2 levels. The initial phosphorylation response is accompanied by marked desensitisation to the cognate agonist. Together, the results reveal that the response of ß-cells to IFNs is regulated both temporally and quantitatively to achieve effective signal integration.


Subject(s)
Interferon-gamma , Interferons , Humans , Interferon-gamma/pharmacology , Interferons/metabolism , Phosphorylation
4.
Sci Rep ; 11(1): 15624, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341375

ABSTRACT

The generation of a human pancreatic beta cell line which reproduces the responses seen in primary beta cells, but is amenable to propagation in culture, has long been an important goal in diabetes research. This is particularly true for studies focussing on the role of enteroviral infection as a potential cause of beta-cell autoimmunity in type 1 diabetes. In the present work we made use of a clonal beta cell line (1.1B4) available from the European Collection of Authenticated Cell Cultures, which had been generated by the fusion of primary human beta-cells with a pancreatic ductal carcinoma cell, PANC-1. Our goal was to study the factors allowing the development and persistence of a chronic enteroviral infection in human beta-cells. Since PANC-1 cells have been reported to support persistent enteroviral infection, the hybrid 1.1B4 cells appeared to offer an ideal vehicle for our studies. In support of this, infection of the cells with a Coxsackie virus isolated originally from the pancreas of a child with type 1 diabetes, CVB4.E2, at a low multiplicity of infection, resulted in the development of a state of persistent infection. Investigation of the molecular mechanisms suggested that this response was facilitated by a number of unexpected outcomes including an apparent failure of the cells to up-regulate certain anti-viral response gene products in response to interferons. However, more detailed exploration revealed that this lack of response was restricted to molecular targets that were either activated by, or detected with, human-selective reagents. By contrast, and to our surprise, the cells were much more responsive to rodent-selective reagents. Using multiple approaches, we then established that populations of 1.1B4 cells are not homogeneous but that they contain a mixture of rodent and human cells. This was true both of our own cell stocks and those held by the European Collection of Authenticated Cell Cultures. In view of this unexpected finding, we developed a strategy to harvest, isolate and expand single cell clones from the heterogeneous population, which allowed us to establish colonies of 1.1B4 cells that were uniquely human (h1.1.B4). However, extensive analysis of the gene expression profiles, immunoreactive insulin content, regulated secretory pathways and the electrophysiological properties of these cells demonstrated that they did not retain the principal characteristics expected of human beta cells. Our data suggest that stocks of 1.1B4 cells should be evaluated carefully prior to their use as a model human beta-cell since they may not retain the phenotype expected of human beta-cells.


Subject(s)
Insulin-Secreting Cells , Insulin , Apoptosis , Cell Line , Enterovirus Infections , Humans
5.
Sci Adv ; 7(9)2021 02.
Article in English | MEDLINE | ID: mdl-33627420

ABSTRACT

Previous results indicate the presence of an interferon (IFN) signature in type 1 diabetes (T1D), capable of inducing chronic inflammation and compromising b cell function. Here, we determined the expression of the IFN response markers MxA, PKR, and HLA-I in the islets of autoantibody-positive and T1D donors. We found that these markers can be coexpressed in the same islet, are more abundant in insulin-containing islets, are highly expressed in islets with insulitis, and their expression levels are correlated with the presence of the enteroviral protein VP1. The expression of these markers was associated with down-regulation of multiple genes in the insulin secretion pathway. The coexistence of an IFN response and a microbial stress response is likely to prime islets for immune destruction. This study highlights the importance of therapeutic interventions aimed at eliminating potentially persistent infections and diminishing inflammation in individuals with T1D.

6.
Microorganisms ; 8(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942706

ABSTRACT

Enteroviruses (EVs) have long been implicated in the pathogenesis of type 1 diabetes (T1D), and accumulating evidence has associated virus-induced autoimmunity with the loss of pancreatic beta cells in T1D. Inflammatory cytokines including interferons (IFN) form a primary line of defence against viral infections, and their chronic elevation is a hallmark feature of many autoimmune diseases. IFNs play a key role in activating and regulating innate and adaptive immune responses, and to do so they modulate the expression of networks of genes and transcription factors known generically as IFN stimulated genes (ISGs). ISGs in turn modulate critical cellular processes ranging from cellular metabolism and growth regulation to endoplasmic reticulum (ER) stress and apoptosis. More recent studies have revealed that IFNs also modulate gene expression at an epigenetic as well as post-transcriptional and post-translational levels. As such, IFNs form a key link connecting the various genetic, environmental and immunological factors involved in the initiation and progression of T1D. Therefore, gaining an improved understanding of the mechanisms by which IFNs modulate beta cell function and survival is crucial in explaining the pathogenesis of virally-induced T1D. This should provide the means to prevent, decelerate or even reverse beta cell impairment.

7.
J Invest Dermatol ; 138(11): 2343-2354, 2018 11.
Article in English | MEDLINE | ID: mdl-29777657

ABSTRACT

Virus-encoded microRNAs are emerging as key regulators of persistent infection and host-cell immune evasion. Merkel cell polyomavirus, the predominant etiological agent of Merkel cell carcinoma, encodes a single microRNA, MCV-miR-M1, which targets the oncogenic Merkel cell polyomavirus large T antigen. MCV-miR-M1 has previously been shown to play an important role in the establishment of long-term infection, however, the underlying mechanism is not fully understood. A key unanswered question is whether, in addition to autoregulating large T antigen, MCV-miR-M1 also targets cellular transcripts to orchestrate an environment conducive to persistent infection. To address this, we adopted an RNA sequencing-based approach to identify cellular targets of MCV-miR-M1. Intriguingly, bioinformatics analysis of transcripts that are differentially expressed in cells expressing MCV-miR-M1 revealed several genes implicated in immune evasion. Subsequent target validation led to the identification of the innate immunity protein, SP100, as a direct target of MCV-miR-M1. Moreover, MCV-miR-M1-mediated modulation of SP100 was associated with a significant decrease in CXCL8 secretion, resulting in the attenuation of neutrophil chemotaxis toward Merkel cells harboring synthetic Merkel cell polyomavirus. Based on these observations, we propose that MCV-miR-M1 targets key immune response regulators to help facilitate persistent infection, which is a prerequisite for cellular transformation in Merkel cell carcinoma.


Subject(s)
Carcinoma, Merkel Cell/immunology , Merkel cell polyomavirus/physiology , MicroRNAs/genetics , Neutrophils/immunology , Polyomavirus Infections/immunology , RNA, Viral/genetics , Tumor Virus Infections/immunology , Antigens, Nuclear/genetics , Antigens, Viral, Tumor/genetics , Autoantigens/genetics , Carcinoma, Merkel Cell/genetics , Chemotaxis , HEK293 Cells , Humans , Immune Evasion , Immunity, Innate/genetics , Interleukin-8/metabolism , Polyomavirus Infections/genetics , Tumor Virus Infections/genetics
8.
Int J Oncol ; 45(6): 2181-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25269471

ABSTRACT

Metastatic melanoma is the leading cause of skin-cancer related deaths and while in recent years some progress has been made with targeted therapies, there remains an urgent unmet need for novel therapeutic treatments and reliable diagnostic, prognostic and predictive biomarkers. The emergence of next generation sequencing (NGS) has seen a growing appreciation for the role played by non-coding genomic transcripts in regulating gene expression and by extension impacting on disease progression. The long non-coding RNAs (lncRNAs) represent the most enigmatic of these new regulatory molecules. Our understanding of how lncRNAs regulate biological functions and their importance to disease aetiology, while still limited, is rapidly improving, in particular with regards to their role in cancer. Herein we review the identification of several lncRNAs shown to impact on melanoma disease progression and discuss how these molecules are operating at the molecular level.


Subject(s)
Melanoma/genetics , Neoplasm Proteins/biosynthesis , RNA, Long Noncoding/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Melanoma/etiology , Melanoma/pathology , Neoplasm Metastasis , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...