Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Micromachines (Basel) ; 12(11)2021 Nov 22.
Article En | MEDLINE | ID: mdl-34832844

Paper-based microchip electrophoresis has the potential to bring laboratory electrophoresis tests to the point of need. However, high electric potential and current values induce pH and temperature shifts, which may affect biomolecule electrophoretic mobility thus decrease test reproducibility and accuracy of paper-based microfluidic electrophoresis. We have previously developed a microchip electrophoresis system, HemeChip, which has the capability of providing low-cost, rapid, reproducible, and accurate point-of-care (POC) electrophoresis tests for hemoglobin analysis. Here, we report the methodologies we implemented for characterizing HemeChip system pH and temperature during the development process, including utilizing commercially available universal pH indicator and digital camera pH shift characterization, and infrared camera characterizing temperature shift characterization. The characterization results demonstrated that pH shifts up to 1.1 units, a pH gradient up to 0.11 units/mm, temperature shifts up to 40 °C, and a temperature gradient up to 0.5 °C/mm existed in the system. Finally, we report an acid pre-treatment of the separation media, a cellulose acetate paper, mitigated both pH and temperature shifts and provided a stable environment for reproducible HemeChip hemoglobin electrophoresis separation.

2.
Analyst ; 145(7): 2525-2542, 2020 Apr 07.
Article En | MEDLINE | ID: mdl-32123889

Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemoglobin C is common in West Africa, and hemoglobin E is common in Southeast Asia. Screening for significant hemoglobin disorders is not currently feasible in many low-income countries with the high disease burden. Lack of early diagnosis leads to preventable high morbidity and mortality in children born with hemoglobin variants in low-resource settings. Here, we describe HemeChip, the first miniaturized, paper-based, microchip electrophoresis platform for identifying the most common hemoglobin variants easily and affordably at the point-of-care in low-resource settings. HemeChip test works with a drop of blood. HemeChip system guides the user step-by-step through the test procedure with animated on-screen instructions. Hemoglobin identification and quantification is automatically performed, and hemoglobin types and percentages are displayed in an easily understandable, objective way. We show the feasibility and high accuracy of HemeChip via testing 768 subjects by clinical sites in the United States, Central India, sub-Saharan Africa, and Southeast Asia. Validation studies include hemoglobin E testing in Bangkok, Thailand, and hemoglobin S testing in Chhattisgarh, India, and in Kano, Nigeria, where the sickle cell disease burden is the highest in the world. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. Study design, methods, and results are presented according to the Standards for Reporting Diagnostic Accuracy (STARD). HemeChip correctly identified all subjects with hemoglobin S, C, and E variants with 100% sensitivity, and displayed an overall diagnostic accuracy of 98.4% in comparison to reference standard methods. HemeChip is a versatile, mass-producible microchip electrophoresis platform that addresses a major unmet need of decentralized hemoglobin analysis in resource-limited settings.


Electrophoresis, Microchip/methods , Hemoglobins/analysis , Paper , Hemoglobin, Sickle/analysis , Humans , Image Processing, Computer-Assisted , Miniaturization , Point-of-Care Systems , User-Computer Interface
3.
J Clin Exp Dent ; 8(5): e546-e549, 2016 Dec.
Article En | MEDLINE | ID: mdl-27957268

BACKGROUND: An understanding of tooth enamel mineral content using a clinically viable method is essential since variations in mineralization may serve as an early precursor of a dental health issues, and may predict progression and architecture of decay in addition to assessing the success and effectiveness of the remineralization strategies. MATERIAL AND METHODS: Twenty two human incisor teeth were obtained in compliance with the NIH guidelines and site specifically imaged with Raman microscope. The front portion of the teeth was divided into apical, medium and cervical regions and subsequently imaged with Raman microscope in these three locations. RESULTS: Measured mineralization levels have varied substantially depending on the regions. It was also observed that, the cervical enamel is the least mineralization as a populational average. CONCLUSIONS: Enamel mineralization is affected by a many factors such as are poor oral hygiene, alcohol consumption and high intake of dietary carbohydrates, however the net effect manifests as overall mineral content of the enamel. Thus an early identification of the individual with overall low mineral content of the enamel may be a valuable screening tool in determining a group with much higher than average caries risk, allowing intervention before development of caries. Clinically applicable non-invasive techniques that can quantify mineral content, such as Raman analysis, would help answer whether or not mineralization is associated with caries risk. Key words:Enamel, Raman spectroscopy, mineral content, dental caries.

...