Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
PeerJ ; 12: e17191, 2024.
Article En | MEDLINE | ID: mdl-38699184

Context: Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims: The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods: The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results: ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions: Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications: The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.


Antioxidants , Droughts , Photosynthesis , Thioctic Acid , Vigna , Vigna/growth & development , Vigna/drug effects , Vigna/metabolism , Thioctic Acid/pharmacology , Antioxidants/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Dehydration , Chlorophyll/metabolism , Lipid Peroxidation/drug effects
2.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Article En | MEDLINE | ID: mdl-37980713

Salinity affects crop growth by modulating cellular ionic concentrations and generation of reactive oxygen species. Application of silicon (Si) has proved beneficial in ameliorating salinity-triggered plant growth and yield retardations. Leaf roll explants of three sugarcane (Saccharum officinarum ) genotypes (HSF-240, CPF-246, CPF-250) were cultured in Murashige and Skoog (MS) medium supplemented with K2 SiO3 . In vitro regenerated plantlets were acclimatised and grown in natural saline soil. In absence of Si, cv. CPF-246 exhibited better salt tolerance as indicted by maximum chlorophyll a and chlorophyll b contents, rate of photosynthesis and root K+ uptake along with less cellular hydrogen peroxide content. Silicon restricted root Na+ uptake but assisted in K+ , Ca2+ , Mg2+ and Fe2+ accretion in roots and their translocation towards shoots. Cv. HSF-240 and cv. CPF-250 exhibited more increase in photosynthetic pigment content, stomatal conductance and photosynthetic rate after addition of 25 or 50mgL-1 Si than control group. Optimum phenolic content and antioxidant enzyme activity along with decreased lipid peroxidation and hydrogen peroxide content were recorded in all three sugarcane genotypes raised in presence of 25 or 50mgL-1 Si. These findings signify Si supplementation (50mgL-1 ) in tissue culture medium and plant adaptation in saline soil. Further in vitro studies involving Si-mediated gene expression modulations in sugarcane protoplasts shall assist in deciphering cross-talk between Si uptake and cellular responses. The application of Si can further be tested for other plant species to devise strategies for improved crop growth and utilisation of saline areas for crop cultivation.


Antioxidants , Saccharum , Antioxidants/metabolism , Saccharum/metabolism , Silicon/pharmacology , Chlorophyll A , Soil , Hydrogen Peroxide , Saline Solution , Dietary Supplements , Nutrients
3.
Environ Sci Pollut Res Int ; 29(47): 71632-71649, 2022 Oct.
Article En | MEDLINE | ID: mdl-35599287

Cadmium (Cd) being a non-essential, mobile, and toxic heavy metal, negatively affects the plant growth and physiology. Current work investigated the impact of Serratia marcescens CP-13 inoculation on root organic acids and nutrient exudates of two maize cultivars varying in Cd tolerance under induced Cd toxicity. Seedlings of Cd-sensitive (Sahiwal-2002) and Cd-tolerant (MMRI-Yellow) cultivars were grown either inoculated or non-inoculated with CP-13 in Petri plates having various Cd stress levels (0, 6, 12, 18, 24, 30 µM). Seedlings were transferred to rhizoboxes for the collection of root exudates and analysis of physio-biochemical traits. Both maize cultivars exuded higher organic acids and nutrient exudates under non-inoculated conditions as compared to inoculated ones. Non-inoculated tolerant cultivar exhibited higher nutrient accumulation, biomass, antioxidants, total chlorophyll, Cd release meanwhile reduced Cd uptake, lipid peroxidation, exudation of organic acids, and nutrients than the sensitive one. However, under CP-13 inoculation, Cd sensitive cultivar exhibited less exudation of organic acids (citric acid, acetic acid, malic acid, glutamic acid, formic acid, succinic acid, and oxalic acid), nutrients mobilization (K, Na, Zn, Ca, and Mg), total chlorophyll, antioxidants (APX, SOD, POD), total soluble sugar, diminished MDA, and Cd uptake. The significant reduction in release of root exudates by both cultivars was likely due to the plant growth promoting traits of CP-13 which confer Cd tolerance. The maximum release of rhizospheric root exudates were documented at 30 µM applied Cd stress. Therefore, the Serratia sp. CP-13 was proposed as a potential inoculant for bioremediation of Cd together with maize cultivars.


Cadmium , Soil Pollutants , Antioxidants/metabolism , Cadmium/analysis , Chlorophyll/metabolism , Citric Acid/metabolism , Formates , Glutamates/metabolism , Oxalates/metabolism , Plant Roots/metabolism , Serratia marcescens/metabolism , Soil Pollutants/analysis , Succinates/metabolism , Sugars/metabolism , Superoxide Dismutase/metabolism , Zea mays
4.
Physiol Mol Biol Plants ; 27(2): 297-312, 2021 Feb.
Article En | MEDLINE | ID: mdl-33707870

Cadmium (Cd) in soil-plant system can abridge plant growth by initiating alterations in root zones. Hydroponics and rhizoboxes are useful techniques to monitor plant responses against various natural and/or induced metal stresses. However, soil based studies are considered more appropriate in order to devise efficient food safety and remediation strategies. The present research evaluated the Cd-mediated variations in elemental dynamics of rhizospheric soil together with in planta ionomics and morpho-physio-biochemical traits of two differentially Cd responsive maize cultivars. Cd-sensitive (31P41) and Cd-tolerant (3062) cultivars were grown in pots filled with 0, 20, 40, 60 and 80 µg/kg CdCl2 supplemented soil. The results depicted that the maize cultivars significantly influenced the elemental dynamics of rhizosphere as well as in planta mineral accumulation under applied Cd stress. The uptake and translocation of N, P, K, Ca, Mg, Zn and Fe from rhizosphere and root cell sap was significantly higher in Cd stressed cv. 3062 as compared to cv. 31P41. In sensitive cultivar (31P41), Cd toxicity resulted in significantly prominent reduction of biomass, leaf area, chlorophyll, carotenoids, protein contents as well as catalase activity in comparison to tolerant one (3062). Analysis of tolerance indexes (TIs) validated that cv. 3062 exhibited advantageous growth and efficient Cd tolerance due to elevated proline, phenolics and activity of antioxidative machinery as compared to cv. 31P41. The cv. 3062 exhibited 54% and 37% less Cd bio-concentration (BCF) and translocation factors (TF), respectively in comparison to cv. 31P41 under highest Cd stress regime. Lower BCF and TF designated a higher Cd stabilization by tolerant cultivar (3062) in rhizospheric zone and its potential use in future remediation plans.

5.
Ecotoxicol Environ Saf ; 208: 111584, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33396107

Cadmium (Cd) is highly toxic for plant metabolic processes even in low concentration due to higher retention rates, longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of Cd tolerant PGPR, Serratia sp. CP-13 together with two differentially Cd tolerant maize cultivars (MMRI-Yellow, Sahiwal-2002) selected amongst ten cultivars after screening. The maize cultivars were grown under different Cd treatments (0, 6, 12, 18, 24, 30 µM) in Petri plates both with and without Serratia sp. CP-13 inoculation. Treated plants were analyzed for their biomass accumulation, chlorophylls, carotenoids, proline, anthocyanin, protein, malondialdehyde (MDA), H2O2 as well as for antioxidants (POD, SOD, CAT) and mineral elements (Ca, Mg, Zn, K, Fe, Na, Cd). The maize cultivar MMRI-Yellow (tolerant) and Sahiwal-2002 (sensitive) exhibited significant reduction in leaf area, nutrient contents, plant biomass, activity of antioxidants, total proteins, photosynthetic pigments as well as flavonoids with increased production of H2O2, proline, MDA and relative membrane permeability (RMP) under Cd stress. However, this reduction was cultivar specific and recorded higher in cv. Sahiwal-2002 as compared to MMRI-Yellow. Application of Serratia sp. CP-13 significantly augmented plant biomass, photosynthetic pigments, antioxidative machinery, as well as flavonoids and proline while diminishing H2O2, RMP MDA production even under Cd stress in studied cultivars. Furthermore, CP-13 inoculation assisted the Cd stressed plants to sustain an optimal level of essential nutrients (Ca, Mg, Zn, K, Fe) except for Na and Cd which responded antagonistically. It was inferred that both inoculated maize cultivars exhibited better health and metabolism but substantial Cd tolerance was acquired by the sensitive cv. Sahiwal-2002 than the tolerant cv. MMRI-Yellow under applied Cd regimes. Furthermore, studied maize cultivars depicted maximum Cd tolerance in order of 30 < 24 < 18 < 12 < 6 < 0 µM Cd treatments under Serratia sp. CP-13 inoculation. Findings of current work highlighted the importance of Serratia sp. CP-13 and its inoculation impact on morpho-physio-biochemical attributes of maize growth under Cd dominant environment, which is likely an addition towards efficient approaches for bacterially-assisted Cd bioremediation and minimal Cd retention in edible plant parts.


Cadmium/toxicity , Serratia/physiology , Soil Pollutants/toxicity , Zea mays/physiology , Antioxidants/metabolism , Biodegradation, Environmental , Biological Transport , Biomass , Cadmium/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Photosynthesis , Plant Leaves/metabolism , Serratia/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Zea mays/metabolism , Zea mays/microbiology
6.
Plants (Basel) ; 9(12)2020 Dec 19.
Article En | MEDLINE | ID: mdl-33352672

The accumulation of cadmium (Cd) in edible plant parts and fertile lands is a worldwide problem. It negatively influences the growth and productivity of leafy vegetables (e.g., spinach, Spinacia oleracea L.), which have a high tendency to radially accumulate Cd. The present study investigated the influences of peptone application on the growth, biomass, chlorophyll content, gas exchange parameters, antioxidant enzymes activity, and Cd content of spinach plants grown under Cd stress. Cd toxicity negatively affected spinach growth, biomass, chlorophyll content, and gas exchange attributes. However, it increased malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), proline accumulation, ascorbic acid content, Cd content, and activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in spinach plants. The exogenous foliar application of peptone increased the growth, biomass, chlorophyll content, proline accumulation, and gas exchange attributes of spinach plants. Furthermore, the application of peptone decreased Cd uptake and levels of MDA, H2O2, and EL in spinach by increasing the activity of antioxidant enzymes. This enhancement in plant growth and photosynthesis might be due to the lower level of Cd accumulation, which in turn decreased the negative impacts of oxidative stress in plant tissues. Taken together, the findings of the study revealed that peptone is a promising plant growth regulator that represents an efficient approach for the phytoremediation of Cd-polluted soils and enhancement of spinach growth, yield, and tolerance under a Cd-dominant environment.

7.
Physiol Mol Biol Plants ; 26(12): 2417-2433, 2020 Dec.
Article En | MEDLINE | ID: mdl-33424156

Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg-1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.

8.
Environ Sci Pollut Res Int ; 26(33): 34633-34644, 2019 Nov.
Article En | MEDLINE | ID: mdl-31654306

Lead (Pb) is highly toxic to plants because it severely affects physiological processes by altering nutrient solution pH. The current study elucidated Pb-induced changes in nutrient solution pH and its effect on physiology of two Solanum melongena L. cultivars (cv. Chuttu and cv. VRIB-13). Plants were grown in black plastic containers having 0, 15, 20, and 25 mg L-1 PbCl2 in nutrient solutions with starting pH of 6.0. pH changes by roots of S. melongena were continuously monitored for 8 days, and harvested plants were analyzed for physiological and biochemical attributes. Time scale studies revealed that cv. Chuttu and cv. VRIB-13 responded to Pb stress by causing acidification and alkalinization of growth medium during the first 48 h, respectively. Both cultivars increased nutrient solution pH, and maximum pH rise of 1.21 units was culminated by cv. VRIB-13 at 15 mg L-1 Pb and 0.8 units by cv. Chuttu at 25 mg L-1 Pb treatment during the 8-day period. Plant biomass, photosynthetic pigments, ascorbic acid, total amino acid, and total protein contents were significantly reduced by Pb stress predominantly in cv. Chuttu than cv. VRIB-13. Interestingly, chlorophyll contents of cv. VRIB-13 increased with increasing Pb levels. Pb contents of roots and shoots of both cultivars increased with applied Pb levels while nutrient (Ca, Mg, K, and Fe) contents decreased predominately in cv. Chuttu. Negative correlations were identified among Pb contents of eggplant roots and shoots and plant biomasses, leaf area, and free anthocyanin. Taken together, growth medium alkalinization, lower root to shoot Pb translocation, and optimum balance of nutrients (Mg and Fe) conferred growth enhancement, ultimately making cv. VRIB-13 auspicious for tolerating Pb toxicity as compared with cv. Chuttu. The research outcomes are important for devising metallicolous plant-associated strategies based on plant pH modulation response and associated metal uptake to remediate Pb-polluted soil.


Lead/toxicity , Soil Pollutants/toxicity , Solanum melongena/physiology , Biological Transport/drug effects , Biomass , Environmental Pollution , Homeostasis , Hydrogen-Ion Concentration , Lead/metabolism , Nutrients , Plant Leaves/metabolism , Plant Physiological Phenomena , Plant Roots/metabolism , Soil Pollutants/metabolism , Solanum melongena/drug effects
9.
Biosci Biotechnol Biochem ; 83(3): 436-445, 2019 Mar.
Article En | MEDLINE | ID: mdl-30295128

The gene encoding copper-dependent laccase from Bacillus subtilis strain R5 was cloned and expressed in Escherichia coli. Initially the recombinant protein was produced in insoluble form as inclusion bodies. Successful attempts were made to produce the recombinant protein in soluble and active form. The laccase activity of the recombinant protein was highly dependent on the presence of copper ions in the growth medium and microaerobic conditions during protein production. The purified enzyme exhibited highest activity at 55 °C and pH 7.0. The recombinant protein was highly thermostable, albeit from a mesophilic source, with a half-life of 150 min at 80 °C. Similar to temperature, the recombinant protein was stable in the presence of organic solvents and protein denaturants such as urea. Furthermore, the recombinant protein was successfully utilized for the degradation of various synthetic dyes reflecting its potential use in treatment of wastewater in textile industry. Abbreviations: ABTS,2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; CBB, Coomassie brilliant blue; SGZ, syringaldazine; DMP, 2,2-dimethoxy phenol.


Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Laccase/genetics , Laccase/metabolism , Amino Acid Sequence , Cloning, Molecular , Coloring Agents/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Kinetics , Laccase/antagonists & inhibitors , Laccase/chemistry , Temperature , Urea/pharmacology
10.
Environ Sci Pollut Res Int ; 25(3): 2958-2971, 2018 Jan.
Article En | MEDLINE | ID: mdl-29147985

Lead (Pb) stress adversely affects in planta nutrient homeostasis and metabolism when present at elevated concentration in the surrounding media. The present study was aimed at investigation of organic acid exudations, elemental contents, growth, and lipid peroxidation in two wild plants (Amaranthus viridis L. and Portulaca oleracea L.), exhibiting differential root to shoot Pb translocation, under Pb stress. Plants were placed in soil spiked with lead chloride (PbCl2) concentrations of 0, 15, 30, 45, or 60 mg Pb/kg soil, in rhizoboxes supplied with nylon nets around the roots. The plant mucilage taken from root surfaces, mirroring the rhizospheric solution, was analyzed for various organic acids. Lead stress resulted in a release of basified root exudates from both plants. Exudates of P. oleracea roots showed a higher pH. In both plants, the pH rising effect was diminished at the highest Pb treatment level. The exudation of citric acid, glutamic acid (in both plants), and fumaric acid (in P. oleracea only) was significantly increased with applied Pb levels. In both plant species, root and shoot Pb contents increased while nutrients (Ca, Mg, and K) decreased with increasing Pb treatment levels, predominantly in A. viridis. At 60 mg Pb/kg soil, shoot Na content of A. viridis was significantly higher as compared to untreated control. Higher Pb treatment levels decreased plant fresh and dry masses as well as the quantity of photosynthetic pigments due to enhanced levels of plant H2O2 and thiobarbituric acid reactive substances in both species. Photosynthetic, growth, and oxidative stress parameters were grouped into three distinct dendrogram sections depending on their similarities under Pb stress. A positive correlation was identified between Pb contents of studied plants and secretion of different organic acids. It is concluded that Pb stress significantly impaired the growth of A. viridis and P. oleracea as a result of nutritional ion imbalance, and the response was cultivar-specific and dependent on exogenous applied Pb levels. Differential lipid oxidation, uptake of nutrients (Ca, Mg, and K) and exudation of citric acid, fumaric acid, and glutamic acid could serve as suitable physiological indicators for adaptations of P. oleracea to Pb enriched environment. The findings may help in devising strategies for Pb stabilization to soil colloids.


Amaranthus/drug effects , Carboxylic Acids/metabolism , Homeostasis/drug effects , Lead/toxicity , Plant Exudates/metabolism , Portulaca/drug effects , Soil Pollutants/toxicity , Amaranthus/growth & development , Biological Transport , Dose-Response Relationship, Drug , Lead/metabolism , Models, Theoretical , Oxidative Stress/drug effects , Portulaca/growth & development , Soil Pollutants/metabolism
11.
Extremophiles ; 21(3): 563-571, 2017 May.
Article En | MEDLINE | ID: mdl-28314922

Genome search of Geobacillus thermopakistaniensis, formerly Geobacillus sp. SBS-4S, revealed the presence of an open reading frame (ESU71923) annotated as laccase. However, the gene product did not display any laccase-like activity against the substrates examined. The laccase activity was, therefore, purified from G. thermopakistaniensis cells and N-terminal amino acid residues of the enzyme were determined. These residues matched the N-terminal sequence of an open reading frame annotated as a copper oxidase (ESU72270). In order to characterize the enzyme, recombinant ESU72270 was prepared in Escherichia coli. The recombinant protein was found to exhibit a negligible amount of laccase activity when produced in the absence of copper in the growth medium. However, the recombinant protein exhibited significantly high laccase activity when produced in the presence of copper. The recombinant enzyme showed highest activity at 60 °C and a pH of 7-7.5. The purified enzyme was highly tolerant to various halides and organic solvents, thus having a potential for various industrial applications. To the best of our knowledge, this is the first characterization of a laccase from genus Geobacillus which identifies a gene responsible for functional laccase in this genus.


Bacterial Proteins/metabolism , Geobacillus/enzymology , Laccase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bromides/chemistry , Chlorides/metabolism , Copper/chemistry , Copper/metabolism , Enzyme Stability , Geobacillus/genetics , Geobacillus/metabolism , Laccase/chemistry , Laccase/genetics , Open Reading Frames , Substrate Specificity
...