Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Med (Lausanne) ; 9: 947456, 2022.
Article in English | MEDLINE | ID: mdl-36507516

ABSTRACT

Central nervous system (CNS) metastasis is the most common brain tumor type in adults. Compared to their primary tumors, these metastases undergo a variety of genetic changes to be able to survive and thrive in the complex tissue microenvironment of the brain. In clinical settings, the majority of traditional chemotherapies have shown limited efficacy against CNS metastases. However, the discovery of potential driver mutations, and the development of drugs specifically targeting affected signaling pathways, could change the treatment landscape of CNS metastasis. Genetic studies of brain tumors have so far focused mainly on common cancers in western populations. In this study, we performed Next Generation Sequencing (NGS) on 50 pairs of primary tumors, including but not limited to colorectal, breast, renal and thyroid tumors, along with their brain metastatic tumor tissue counterparts, from three different local tertiary centers in Saudi Arabia. We identified potentially clinically relevant mutations in brain metastases that were not detected in corresponding primary tumors, including mutations in the PI3K, CDK, and MAPK pathways. These data highlight the differences between primary cancers and brain metastases and the importance of acquiring and analyzing brain metastatic samples for further clinical management.

2.
Pituitary ; 24(3): 359-373, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492612

ABSTRACT

PURPOSE: Pituitary tumors are the second most common primary brain tumors. Functional tumors demonstrate increased PD-L1 expression, but expression of other checkpoint regulators has not been characterized. We sought to characterize the immune microenvironment of human pituitary tumors to identify new treatment opportunities. METHODS: 72 pituitary tumors were evaluated for expression of the immune regulatory markers programmed death ligand 1 (PD-L1), programmed death ligand 2 (PD-L2), V-domain Ig suppressor of T cell activation (VISTA), lymphocyte activation gene 3 (LAG3) and tumor necrosis factor receptor superfamily member 4 (OX40) by immunohistochemistry (IHC). Lymphocyte infiltration, macrophage infiltration, and angiogenesis were analyzed using IHC. Expression of pituitary tumor initiating cell marker CD15 and mismatch repair proteins MutS protein homolog 2 (MSH2) and MutS protein homolog 6 (MSH6) was also assessed. RESULTS: Pituitary tumors were infiltrated by macrophages and T cells, and they expressed varying levels of PD-L1, PD-L2, VISTA, LAG3, and OX40. Functional tumors and tumors with high expression of tumor stem cell markers had higher immune cell infiltration and greater expression of immunosuppressive checkpoint regulators. Increased PD-L1 and LAG3 and reduced VISTA were observed in primary tumors compared to recurrent tumors. CONCLUSION: Immune cell infiltration and checkpoint regulator expression vary depending on functional status and presence of pituitary tumor initiating cells. Functional tumors may have a particularly immunosuppressive microenvironment. Further studies of immune checkpoint blockade of pituitary tumors, particularly functional tumors, are warranted, though combination therapy may be required.


Subject(s)
B7-H1 Antigen , Pituitary Neoplasms , Humans , Immunohistochemistry , MutS Proteins , Neoplasm Recurrence, Local , Pituitary Neoplasms/genetics , Tumor Microenvironment
3.
Front Neurol ; 11: 657, 2020.
Article in English | MEDLINE | ID: mdl-32733369

ABSTRACT

Chordomas are rare tumors that are notoriously refractory to chemotherapy and radiotherapy when radical surgical resection is not achieved or upon recurrence after maximally aggressive treatment. The study of chordomas has been complicated by small patient cohorts and few available model systems due to the rarity of these tumors. Emerging next-generation sequencing technologies have broadened understanding of this disease by implicating novel pathways for possible targeted therapy. Mutations in cell-cycle regulation and chromatin remodeling genes have been identified in chordomas, but their significance remains unknown. Investigation of the immune microenvironment of these tumors suggests that checkpoint protein expression may influence prognosis, and adjuvant immunotherapy may improve patient outcome. Finally, growing evidence supports aberrant growth factor signaling as potential pathogenic mechanisms in chordoma. In this review, we characterize the impact on treatment opportunities offered by the genomic and immunologic landscape of this tumor.

4.
Neurosurg Focus ; 44(6): E12, 2018 06.
Article in English | MEDLINE | ID: mdl-29852761

ABSTRACT

OBJECTIVE Craniopharyngiomas are among the most challenging of intracranial tumors to manage because of their pattern of growth, associated morbidities, and high recurrence rate. Complete resection on initial encounter can be curative, but it may be impeded by the risks posed by the involved neurovascular structures. Recurrent craniopharyngiomas, in turn, are frequently refractory to additional surgery and adjuvant radiation or chemotherapy. METHODS The authors conducted a review of primary literature. RESULTS Recent advances in the understanding of craniopharyngioma biology have illuminated potential oncogenic targets for pharmacotherapy. Specifically, distinct molecular profiles define two histological subtypes of craniopharyngioma: adamantinomatous and papillary. The discovery of overactive B-Raf signaling in the adult papillary subtype has led to reports of targeted inhibitors, with a growing acceptance for refractory cases. An expanding knowledge of the biological underpinnings of craniopharyngioma will continue to drive development of targeted therapies and immunotherapies that are personalized to the molecular signature of each individual tumor. CONCLUSIONS The rapid translation of genomic findings to medical therapies for recurrent craniopharyngiomas serves as a roadmap for other challenging neurooncological diseases.


Subject(s)
Craniopharyngioma/genetics , Pituitary Neoplasms/genetics , Translational Research, Biomedical/methods , Craniopharyngioma/diagnosis , Craniopharyngioma/therapy , Humans , Immunotherapy/methods , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics , Translational Research, Biomedical/trends
5.
Case Rep Pathol ; 2018: 7256871, 2018.
Article in English | MEDLINE | ID: mdl-29651357

ABSTRACT

A 44-year-old male with schizophrenia presented with progressive right proptosis for one year and conjunctivitis for two months. An orbital cyst was seen in the superotemporal region on computerized tomography and was surgically removed. There was no history or radiological signs of paranasal sinus disease or previous trauma. Histopathologic evaluation revealed a cyst lined with respiratory epithelium. Respiratory choristomatous cysts of the orbit are considered rare in both pediatric and adult patients. We review the literature of respiratory orbital cysts and conclude that they tend to present in adults and should be considered in the differential diagnoses of orbital cysts.

6.
PLoS One ; 7(6): e39945, 2012.
Article in English | MEDLINE | ID: mdl-22768179

ABSTRACT

BACKGROUND: A number of constitutively activated signaling pathways play critical roles in the survival and growth of primary effusion lymphoma cells (PELs) including NFkB and PI3/AKT kinase cascades. NFkBis constitutively activated in a number of malignancies, including multiple myeloma, Burkitt's lymphoma and diffuse large cell B-cell lymphoma. However, its role in primary effusion lymphoma has not been fully explored. METHODOLOGY/PRINCIPAL FINDINGS: We used pharmacological inhibition and gene silencing to define the role of NFkB in growth and survival of PEL cells. Inhibition of NFkB activity by Bay11-7085 resulted in decreased expression of p65 in the nuclear compartment as detected by EMSA assays. In addition, Bay11-7085 treatment caused de-phosphorylation of AKT and its downstream targets suggesting a cross-talk between NFkB and the PI3-kinase/AKT pathway. Importantly, treatment of PEL cells with Bay11-7085 led to inhibition of cell viability and induced apoptosis in a dose dependent manner. Similar apoptotic effects were found when p65 was knocked down using specific small interference RNA. Finally, co-treatment of PEL cells with suboptimal doses of Bay11-7085 and LY294002 led to synergistic apoptotic responses in PEL cells. CONCLUSION/SIGNIFICANCE: These data support a strong biological-link between NFkB and the PI3-kinase/AKT pathway in the modulation of anti-apoptotic effects in PEL cells. Synergistic targeting of these pathways using NFKB- and PI3-kinase/AKT-inhibitors may have a therapeutic potential for the treatment of PEL and possibly other malignancies with constitutive activation of these pathways.


Subject(s)
Apoptosis , Lymphoma, Primary Effusion/enzymology , Lymphoma, Primary Effusion/pathology , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation/drug effects , Drug Synergism , Enzyme Activation/drug effects , Humans , I-kappa B Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , NF-KappaB Inhibitor alpha , NF-kappa B/antagonists & inhibitors , Nitriles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL