Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 12(7)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35888781

ABSTRACT

Endurance training induces several adaptations in substrate metabolism, especially in relation to glycogen conservation. The study aimed to investigate differences in the metabolism of lipids, lipid-like substances, and amino acids between highly trained and untrained subjects using targeted metabolomics. Depending on their maximum relative oxygen uptake (VO2max), subjects were categorized as either endurance-trained (ET) or untrained (UT). Resting blood was taken and plasma isolated. It was screened for changes of 345 metabolites, including amino acids and biogenic amines, acylcarnitines, glycerophosphocholines (GPCs), sphingolipids, hexoses, bile acids, and polyunsaturated fatty acids (PUFAs) by using liquid chromatography coupled to tandem mass spectrometry. Acylcarnitine (C14:1, down in ET) and five GPCs (lysoPC a C18:2, up in ET; PC aa C42:0, up in ET; PC ae C38:2, up in ET; PC aa C38:5, down in ET; lysoPC a C26:0, down in ET) were differently regulated in ET compared to UT. TCDCA was down-regulated in athletes, while for three ratios of bile acids CA/CDCA, CA/(GCA+TCA), and DCA/(GDCA+TDCA) an up-regulation was found. TXB2 and 5,6-EET were down-regulated in the ET group and 18S-HEPE, a PUFA, showed higher levels in 18S-HEPE in endurance-trained subjects. For PC ae C38:2, TCDCA, and the ratio of cholic acid to chenodeoxycholic acid, an association with VO2max was found. Numerous phospholipids, acylcarnitines, glycerophosphocholines, bile acids, and PUFAs are present in varying concentrations at rest in ET. These results might represent an adaptation of lipid metabolism and account for the lowered cardiovascular risk profile of endurance athletes.

2.
Front Physiol ; 12: 694411, 2021.
Article in English | MEDLINE | ID: mdl-34366884

ABSTRACT

The aim of this systematic review was to assess the effects of genetic variations and polymorphisms on endurance performance, muscle strength and injury susceptibility in competitive sports. The electronic databases PubMed and Web of Science were searched for eligible studies. The study quality was assessed using the RoBANS tool. Studies were included if they met the following criteria: (1) human study in English or German; (2) published in the period 2015-2019; (3) investigation of an association between genetic variants and endurance performance and/or muscle strength and/or endurance/strength training status as well as ligament, tendon, or muscle injuries; (4) participants aged 18-60 years and national or international competition participation; (5) comparison with a control group. Nineteen studies and one replication study were identified. Results revealed that the IGF-1R 275124 A>C rs1464430 polymorphism was overrepresented in endurance trained athletes. Further, genotypes of PPARGC1A polymorphism correlated with performance in endurance exercise capacity tests in athletes. Moreover, the RR genotype of ACTN3 R577X polymorphism, the C allele of IGF-1R polymorphism and the gene variant FTO T>A rs9939609 and/or their AA genotype were linked to muscle strength. In addition, gene variants of MCT1 (T1470A rs1049434) and ACVR1B (rs2854464) were also positively associated with strength athletes. Among others, the gene variants of the MMP group (rs591058 and rs679620) as well as the polymorphism COL5A1 rs13946 were associated with susceptibility to injuries of competitive athletes. Based on the identified gene variants, individualized training programs for injury prevention and optimization of athletic performance could be created for competitive athletes using gene profiling techniques.

3.
J Clin Med ; 9(6)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498263

ABSTRACT

Pulmonary arterial hypertension (PAH) represents a chronic progressive disease characterized by high blood pressure in the pulmonary arteries leading to right heart failure. The disease has been a focus of medical research for many years due to its worse prognosis and limited treatment options. The aim of this study was to systematically assess the effects of different types of exercise interventions on PAH. Electronic databases were searched until July 2019. MEDLINE database was used as the predominant source for this paper. Studies with regards to chronic physical activity in adult PAH patients are compared on retrieving evidence on cellular, physiological, and psychological alterations in the PAH setting. Twenty human studies and 12 rat trials were identified. Amongst all studies, a total of 628 human subjects and 614 rats were examined. Regular physical activity affects the production of nitric oxygen and attenuates right ventricular hypertrophy. A combination of aerobic, anaerobic, and respiratory muscle training induces the strongest improvement in functional capacity indicated by an increase of 6 MWD and VO2peak. In human studies, an increase of quality of life was found. Exercise training has an overall positive effect on the physiological and psychological components of PAH. Consequently, PAH patients should be encouraged to take part in regular exercise training programs.

4.
Am J Physiol Regul Integr Comp Physiol ; 318(6): R1103-R1115, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32401626

ABSTRACT

This study aimed to investigate the effects of a short-term (36 h) fasting period combined with an acute bout of exercise on markers of immune function and inflammation in healthy human subjects. Fourteen moderately trained male subjects (aged 19-39 yr) participated in a 36-h fasting trial (FA-T), followed by an acute bout of moderate exercise (60% V̇o2max). After 1 wk, the same subjects, as their own control, participated in a nonfasting trial (NFA-T) in which they performed an exercise trial of the same duration and intensity. Blood samples were taken before, immediately after, and 1 h after each exercise bout and analyzed for several immunological and metabolic markers. At baseline, fasting subjects showed lower levels of T cell apoptosis, lymphocyte-proliferative responses, IL-6, monocyte chemoattractant protein-1 (MCP-1), insulin, and leptin (P < 0.05) as well as higher levels of neutrophil oxidative burst and thiobarbituric acid reactive substances (TBARS) than those in the NFA-T (P < 0.05). After the exercise protocol, fasted subjects revealed higher T cell apoptosis, neutrophil oxidative burst, TBARS, TNFα, and MCP-1 levels as well as lower levels of lymphocyte-proliferative response, IL-6, insulin, and leptin than those in the NFA-T (P < 0.05). Short-term fasting aggravates perturbations in markers of immune function, and inflammation was induced by an acute moderate-intensity exercise protocol.


Subject(s)
Exercise/physiology , Fasting/blood , Inflammation/blood , Adult , Apoptosis/physiology , Biomarkers/blood , Chemokine CCL2/blood , Healthy Volunteers , Humans , Insulin/blood , Interleukin-6/blood , Leptin/blood , Male , Oxidative Stress/physiology , Thiobarbituric Acid Reactive Substances/metabolism , Tumor Necrosis Factor-alpha/blood , Young Adult
5.
Sci Rep ; 10(1): 888, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964936

ABSTRACT

To date, the effects of endurance exercise training on lymphocyte physiology at the kinome level are largely unknown. Therefore, the present study used a highly sensitive peptide-based kinase activity profiling approach to investigate if the basal activity of tyrosine (Tyr) and serine/threonine (Ser/Thr) kinases of human lymphocytes is affected by the aerobic endurance training status. Results revealed that the activity of various tyrosine kinases of the FGFR family and ZAP70 was increased, whereas the activity of multiple Ser/Thr kinases such as IKKα, CaMK4, PKAα, PKCα+δ (among others) was decreased in lymphocytes of endurance trained athletes (ET). Moreover, functional associations between several differentially regulated kinases in ET-derived lymphocytes were demonstrated by phylogenetic mapping and network analysis. Especially, Ser/Thr kinases of the AGC-kinase (protein kinase A, G, and C) family represent exercise-sensitive key components within the lymphocytes kinase network that may mediate the long-term effects of endurance training. Furthermore, KEGG (Kyoto Encyclopedia of Genes and Genomes) and Reactome pathway analysis indicate that Ras as well as intracellular signaling by second messengers were found to be enriched in the ET individuals. Overall, our data suggest that endurance exercise training improves the adaptive immune competence by modulating the activity of multiple protein kinases in human lymphocytes.


Subject(s)
Endurance Training , Lymphocytes/enzymology , Protein Kinases/metabolism , Adult , Athletes , Exercise Test , Humans , Lymphocytes/physiology , Phosphorylation , Phylogeny , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Running , Tyrosine/metabolism
6.
Front Physiol ; 10: 684, 2019.
Article in English | MEDLINE | ID: mdl-31214051

ABSTRACT

The peripheral T-cell pool undergoes a striking age associated remodeling which is accelerated by progressive insulin resistance. Exercise training is known to delay several aspects of T-cell senescence. The purpose of the current study was to investigate the effect of 3 weeks regular concentric or eccentric endurance exercise training on the composition of the T-cell compartment in pre-diabetic subjects. Sixteen male older adults with impaired glucose tolerance were recruited and performed either concentric exercise (CE) or eccentric exercise (EE) walking 3 times a week for 3 weeks. Fasting venous blood sampling was performed before training and after the training intervention. Various T-cell subpopulations were analyzed by flow cytometry. We did not find significant time × group effects (interaction) but found several significant time effects for cell type ratios and cell subsets proportions. There was an increase of the CD4+/CD8+ (0.55 ± 0.85%; p = 0.033) and CD4+/CD3+ ratio (5.63 ± 8.44%; p = 0.018) and a decrease of the CD8+/CD3+ ratio (-0.95 ± 1.64%; p = 0.049) after training. We found proportional increases of CD4+/CCR7+/CD45RO+ central memory cells (5.02 ± 7.68%; p = 0.030), naïve CD8+/CCR7+/CD45RO- (3.00 ± 6.68%; p = 0.047) and CD8+/CCR7+/CD45RO+ central memory cells (3.01 ± 3.70%; p = 0.009), while proportions of CD4+/CCR7-/CD45RO- TEMRA cells (-2.17 ± 4.66%; p = 0.012), CD8+/CCR7-/CD45RO- TEMRA cells (-5.11 ± 7.02%; p = 0.018) and CD16+ cells (-4.67 ± 6.45%; p = 0.016) decreased after training. 3 weeks of either CE or EE were effective in reversing hallmarks of T-cell senescence in pre-diabetic subjects. It is suggested that exercise stimulates production and mobilization of naïve T-cells, while differentiated TEMRA cells might disappear by apoptosis.

7.
Brain Behav Immun ; 75: 251-257, 2019 01.
Article in English | MEDLINE | ID: mdl-30790541

ABSTRACT

Apoptosis is a genetically regulated form of programmed cell death which promotes the elimination of potentially detrimental immune cells. However, exercise-associated apoptosis is thought to induce a temporarily decline of the adaptive immune competence in the early post-exercise period. The purpose of the present study was to investigate if the aerobic endurance training status affects the sensitivity of human peripheral blood lymphocytes towards different types of apoptosis inducers and secondly, if this is mediated by the modulation of apoptosis-associated proteins and microRNAs. Collected at resting conditions, isolated lymphocytes of endurance trained athletes (ET) and healthy untrained subjects were either exposed to phytohemagglutinin-L (PHA-L), hydrogen peroxide (H2O2), or dexamethasone (DEX) as apoptosis inducer. Results revealed no significant differences between ET and UT in terms of lymphocyte apoptosis immediately following isolation as determined by flow cytometry using annexin V staining. After 24 h of ex vivo cultivation, lymphocytes of ET showed a reduced sensitivity to PHA-L-induced lymphocyte apoptosis which was accompanied by a noticeably up-regulation of the prominent apoptosis inhibitor genes X-linked inhibitor of apoptosis (XIAP) and Cyclin dependent kinase inhibitor 1B (CDKN1B) as analyzed by quantitative real-time PCR. Moreover, a trend was observed for the suppression of the corresponding pro-apoptotic miR-221. Lymphocyte apoptosis in control, H2O2 and DEX treated cells was not affected by aerobic endurance training status. However, distinct molecular signatures could be identified in un-treated control samples characterized by a counterbalanced modulation of pro- and anti-apoptotic mediators in ET. The results of the current study suggest that lymphocytes adapt to repetitive endurance exercise training by promoting lymphocyte homeostasis and increasing their resistance to apoptosis. This could be based on an up-regulation of anti-apoptotic proteins and a reduction in pro-apoptotic microRNAs which together tightly regulate the genetically defined apoptotic pathways governed by the type of apoptosis stimuli. Thus, the lymphocytes of endurance-trained athletes may be primed to counteract the transient immune suppression post-exercise.


Subject(s)
Apoptosis/physiology , Exercise/physiology , Lymphocytes/physiology , Adaptation, Physiological , Adult , Athletes , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Dexamethasone/pharmacology , Endurance Training/methods , Gene Expression Regulation/physiology , Humans , Hydrogen Peroxide/pharmacology , Lymphocytes/metabolism , Male , MicroRNAs/metabolism , MicroRNAs/physiology , Phytohemagglutinins/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism
8.
J Inflamm Res ; 11: 155-167, 2018.
Article in English | MEDLINE | ID: mdl-29731655

ABSTRACT

Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus-capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic antioxidative capacity and several compensatory mechanisms in tissues such as an increased anabolic signaling in muscle or an increased compliance of the vascular system. Accordingly, regular exercise training seems to protect long-term smokers against some important negative local and systemic consequences of smoking. Data suggest that it seems to be important to start exercise training as early as possible.

9.
Med Sci Sports Exerc ; 48(10): 2021-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27183117

ABSTRACT

INTRODUCTION: High-intensity interval training (HIT) exercise has gained much interest in both performance and recreational sports. This study aims to compare the effect of HIT versus continuous (CONT) exercise with regard to changes of circulating T cells and progenitor cells. METHODS: Subjects (n = 23) completed an HIT test and an isocaloric CONT test. Blood samples were collected before, immediately after, and 3 and 24 h postexercise for the assessment of low differentiated (CD3CD28CD57), highly differentiated T cells (CD3CD28CD57), regulatory T cells (Tregs) (CD4CD25CD127), hematopoietic progenitor cells (CD45CD34), and endothelial progenitor cells (CD45CD34KDR) by flow cytometry. The detection of apoptosis was performed by using labeling with annexin V. To analyze potential mechanisms affecting T cells, several hormones and metabolites were analyzed. RESULTS: Both exercise tests induced an increase of catecholamines, cortisol, and thiobarbituric acid-reactive substances (P < 0.05). CONT induced a higher increase of apoptosis in low differentiated T cells compared with the HIT (CONT: 3.66% ± 0.21% to 6.48% ± 0.29%, P < 0.05; HIT: 3.43% ± 0.31% to 4.71% ± 0.33%), whereas HIT was followed by a higher rate of apoptotic highly differentiated T cells (CONT: 21.45% ± 1.23% to 25.32% ± 1.67%; HIT: 22.45% ± 1.37% to 27.12% ± 1.76%, P < 0.05). Regarding Tregs, HIT induced a mobilization, whereas CONT induced apoptosis in these cells (P < 0.05). The mobilization of progenitor cells did not differ between the exercise protocols. CONCLUSION: These results suggest that HIT deletes mainly highly differentiated T cells known to affect immunity to control latent infections. By contrast, CONT deletes mainly low differentiated T cells and Tregs, which might affect defense against new infectious agents.


Subject(s)
Apoptosis , High-Intensity Interval Training , T-Lymphocyte Subsets/cytology , Adult , Blood Glucose/metabolism , Catecholamines/blood , Fatty Acids, Nonesterified/blood , Humans , Hydrocortisone/blood , Lactic Acid/blood , Leukocytosis , Male , Stem Cells/cytology , Stem Cells/metabolism , T-Lymphocyte Subsets/metabolism , Thiobarbiturates/blood
SELECTION OF CITATIONS
SEARCH DETAIL