Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Commun ; 14(1): 1638, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015925

ABSTRACT

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Subject(s)
COVID-19 , Humans , Child , Adult , SARS-CoV-2 , Critical Illness , Cytokines , Fibrinogen
2.
Nature ; 611(7934): 139-147, 2022 11.
Article in English | MEDLINE | ID: mdl-36044993

ABSTRACT

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Subject(s)
Autoantibodies , B-Lymphocytes , COVID-19 , Humans , Autoantibodies/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Immunoglobulin G/immunology , Single-Cell Analysis , Autoantigens/immunology , Basement Membrane/immunology , Post-Acute COVID-19 Syndrome
3.
Mol Genet Genomic Med ; 10(8): e2001, 2022 08.
Article in English | MEDLINE | ID: mdl-35852003

ABSTRACT

BACKGROUND: Fragile X syndrome is characterized by a myriad of physical features, behavioral features, and medical problems. Commonly found behavioral features are hyperactivity, anxiety, socialization difficulties, and ASD. There is also a higher incidence than in the general population of strabismus, otitis media, and mitral valve prolapse. In addition, one of the most common medical problems associated with FXS is an increased risk of seizures. A subset of individuals carrying the full mutation of the FMR1 gene and diagnosed with fragile X syndrome (FXS) are reported to experience seizures, mostly during the first 10 years of their life span. METHODS: As part of a larger project to identify genetic variants that modify the risk of seizures, we collected clinical information from 49 carriers with FXS who experienced seizures and 46 without seizures. We compared seizure type and comorbid conditions based on the source of data as well as family history of seizures. RESULTS: We found that the concordance of seizure types observed by parents and medical specialists varied by type of seizure. The most common comorbid condition among those with seizures was autism spectrum disorder (47% per medical records vs. 33% per parent report compared with 19% among those without seizures per parent report); the frequency of other comorbid conditions did not differ among groups. We found a slightly higher frequency of family members who experienced seizures among the seizure group compared with the nonseizure group. CONCLUSION: This study confirms previously reported features of seizures in FXS, supports additional genetic factors, and highlights the importance of information sources, altogether contributing to a better understanding of seizures in FXS.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Mitral Valve Prolapse , Comorbidity , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Humans , Seizures/epidemiology , Seizures/genetics
4.
Hum Genet ; 139(12): 1531-1539, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32533363

ABSTRACT

The fragile X premutation is defined by the expansion of the CGG trinucleotide repeat at the 5' UTR of the FMR1 gene to between 55 and 200 repeats, while repeat tracks longer than 200 are defined as full mutations. Men carrying a premutation are at increased risk for fragile X-associated tremor/ataxia syndrome (FXTAS); those with > 200 repeats have fragile X syndrome, a common genetic form of intellectual disabilities. In our study, we tested the hypothesis that men carrying a fragile X premutation or full mutation are "biologically older", as suggested by the associated age-related disorder in the presence of the fragile X premutation or the altered cellular pathology that affects both the fragile X premutation and full mutation carriers. Thus, we predicted that both groups would have shorter telomeres than men carrying the normal size repeat allele. Using linear regression models, we found that, on average, premutation carriers had shorter telomeres compared with non-carriers (n = 69 vs n = 36; p = 0.02) and that there was no difference in telomere length between full mutation carriers and non-carriers (n = 37 vs n = 29; p > 0.10). Among premutation carriers only, we also asked whether telomere length was shorter among men with vs without symptoms of FXTAS (n = 28 vs n = 38 and n = 27 vs n = 41, depending on criteria) and found no evidence for a difference (p > 0.10). Previous studies have shown that the premutation is transcribed whereas the full mutation is not, and the expanded repeat track in FMR1 transcript is thought to lead to the risk for premutation-associated disorders. Thus, our data suggest that the observed premutation-only telomere shortening may be a consequence of the toxic effect of the premutation transcript and suggest that premutation carriers are "biologically older" than men carrying the normal size allele in the same age group.


Subject(s)
Ataxia/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Telomere/genetics , Tremor/genetics , 5' Untranslated Regions/genetics , Adult , Aged , Alleles , Ataxia/pathology , Fragile X Syndrome/pathology , Humans , Male , Middle Aged , Mutation/genetics , Telomere/pathology , Telomere/ultrastructure , Telomere Homeostasis/genetics , Tremor/pathology , Trinucleotide Repeat Expansion/genetics , Young Adult
5.
NAR Genom Bioinform ; 2(3): lqaa072, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33575620

ABSTRACT

We are motivated by biological studies intended to understand global gene expression fold change. Biologists have generally adopted a fixed cutoff to determine the significance of fold changes in gene expression studies (e.g. by using an observed fold change equal to two as a fixed threshold). Scientists can also use a t-test or a modified differential expression test to assess the significance of fold changes. However, these methods either fail to take advantage of the high dimensionality of gene expression data or fail to test fold change directly. Our research develops a new empirical Bayesian approach to substantially improve the power and accuracy of fold-change detection. Specifically, we more accurately estimate gene-wise error variation in the log of fold change. We then adopt a t-test with adjusted degrees of freedom for significance assessment. We apply our method to a dosage study in Arabidopsis and a Down syndrome study in humans to illustrate the utility of our approach. We also present a simulation study based on real datasets to demonstrate the accuracy of our method relative to error variance estimation and power in fold-change detection. Our developed R package with a detailed user manual is publicly available on GitHub at https://github.com/cuiyingbeicheng/Foldseq.

6.
Hum Mol Genet ; 29(2): 238-247, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31813999

ABSTRACT

Trisomy 18, sometimes called Edwards syndrome, occurs in about 1 in 6000 live births and causes multiple birth defects in affected infants. The extra copy of chromosome 18 causes the altered expression of many genes and leads to severe skeletal, cardiovascular and neurological systems malformations as well as other medical problems. Due to the low rate of survival and the massive genetic imbalance, little research has been aimed at understanding the molecular consequences of trisomy 18 or considering potential therapeutic approaches. Our research is the first study to characterize whole-genome expression in fibroblast cells obtained from two patients with trisomy 18 and two matched controls, with follow-up expression confirmation studies on six independent controls. We show a detailed analysis of the most highly dysregulated genes on chromosome 18 and those genome-wide. The identified effector genes and the dysregulated downstream pathways provide hints of possible genotype-phenotype relationships to some of the most common symptoms observed in trisomy 18. We also provide a possible explanation for the sex-specific differences in survival, a unique characteristic of trisomy 18. Our analysis of genome-wide expression data moves us closer to understanding the molecular consequences of the second most common human autosomal trisomy of infants who survive to term. These insights might also translate to the understanding of the etiology of associated birth defects and medical conditions among those with trisomy 18.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 18/genetics , Fibroblasts/metabolism , Gene Expression Regulation/genetics , Trisomy 18 Syndrome/genetics , Cells, Cultured , Female , Genetic Association Studies , Genome-Wide Association Study , Genomics , Genotype , Humans , Infant , Infant, Newborn , Male , Phenotype , RNA-Seq , Trisomy 18 Syndrome/etiology , Trisomy 18 Syndrome/pathology
7.
Nat Commun ; 10(1): 372, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655540

ABSTRACT

The original version of this Article omitted a declaration from the Competing Interests statement, which should have included the following: 'A patent has been applied for by Emory University with F.E.L, I.S. and D.C. N. as named inventors. The patent application number is PCT/US2016/036650'. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 9(1): 3698, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209264

ABSTRACT

Human antibody-secreting cells (ASC) in peripheral blood are found after vaccination or infection but rapidly apoptose unless they migrate to the bone marrow (BM). Yet, elements of the BM microenvironment required to sustain long-lived plasma cells (LLPC) remain elusive. Here, we identify BM factors that maintain human ASC > 50 days in vitro. The critical components of the cell-free in vitro BM mimic consist of products from primary BM mesenchymal stromal cells (MSC), a proliferation-inducing ligand (APRIL), and hypoxic conditions. Comparative analysis of protein-protein interactions between BM-MSC proteomics with differential RNA transcriptomics of blood ASC and BM LLPC identify two major survival factors, fibronectin and YWHAZ. The MSC secretome proteins and hypoxic conditions play a role in LLPC survival utilizing mechanisms that downregulate mTORC1 signaling and upregulate hypoxia signatures. In summary, we identify elements of the BM survival niche critical for maturation of blood ASC to BM LLPC.


Subject(s)
Bone Marrow/metabolism , Cell Survival/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , 14-3-3 Proteins/metabolism , Adult , Antibody-Producing Cells/cytology , Antibody-Producing Cells/metabolism , Cell Survival/genetics , Cells, Cultured , Female , Fibronectins/metabolism , Humans , Male , Middle Aged , Protein Binding , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Young Adult
9.
Am J Med Genet A ; 173(11): 2985-2994, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28941155

ABSTRACT

Women who carry a fragile X premutation, defined as having 55-200 unmethylated CGG repeats in the 5' UTR of the X-linked FMR1 gene, have a 20-fold increased risk for primary ovarian insufficiency (FXPOI). We tested the hypothesis that women with a premutation + FXPOI have shorter telomeres than those without FXPOI because they are "biologically older." Using linear regression, we found that women carrying a premutation (n = 172) have shorter telomeres and hence, are "biologically older" than women carrying the normal size allele (n = 81). Strikingly, despite having shorter telomeres, age was not statistically associated with their telomere length, in contrast to non-carrier controls. Further, telomere length within premutation carriers was not associated with repeat length but was associated with a diagnosis of FXPOI, although the latter finding may depend on FXPOI age of onset.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Primary Ovarian Insufficiency/genetics , Telomere Homeostasis/genetics , 5' Untranslated Regions/genetics , Adult , Alleles , Cellular Senescence/genetics , DNA Methylation/genetics , Female , Fragile X Syndrome/epidemiology , Fragile X Syndrome/physiopathology , Humans , Middle Aged , Mutation , Primary Ovarian Insufficiency/epidemiology , Primary Ovarian Insufficiency/physiopathology , Risk Factors , Telomere/genetics , Young Adult
10.
Immunity ; 43(1): 132-45, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26187412

ABSTRACT

Antibody responses to viral infections are sustained for decades by long-lived plasma cells (LLPCs). However, LLPCs have yet to be characterized in humans. Here we used CD19, CD38, and CD138 to identify four PC subsets in human bone marrow (BM). We found that the CD19(-)CD38(hi)CD138(+) subset was morphologically distinct, differentially expressed PC-associated genes, and exclusively contained PCs specific for viral antigens to which the subjects had not been exposed for more than 40 years. Protein sequences of measles- and mumps-specific circulating antibodies were encoded for by CD19(-)CD38(hi)CD138(+) PCs in the BM. Finally, we found that CD19(-)CD38(hi)CD138(+) PCs had a distinct RNA transcriptome signature and human immunoglobulin heavy chain (VH) repertoire that was relatively uncoupled from other BM PC subsets and probably represents the B cell response's "historical record" of antigenic exposure. Thus, our studies define human LLPCs and provide a mechanism for the life-long maintenance of anti-viral antibodies in the serum.


Subject(s)
Antibodies, Viral/immunology , Bone Marrow Cells/immunology , Measles virus/immunology , Mumps virus/immunology , Plasma Cells/immunology , ADP-ribosyl Cyclase 1/metabolism , Adult , Aged , Antibodies, Viral/blood , Antigens, CD19/metabolism , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Membrane Glycoproteins/metabolism , Middle Aged , RNA, Messenger/genetics , Syndecan-1/metabolism , Young Adult
11.
Am J Hum Genet ; 85(4): 503-14, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19804849

ABSTRACT

Fragile X syndrome (FXS) results from a CGG-repeat expansion that triggers hypermethylation and silencing of the FMR1 gene. FXS is referred to as the most common form of inherited intellectual disability, yet its true incidence has never been measured directly by large population screening. Here, we developed an inexpensive and high-throughput assay to quantitatively assess FMR1 methylation in DNA isolated from the dried blood spots of 36,124 deidentified newborn males. This assay displays 100% specificity and 100% sensitivity for detecting FMR1 methylation, successfully distinguishing normal males from males with full-mutation FXS. Furthermore, the assay can detect excess FMR1 methylation in 82% of females with full mutations, although the methylation did not correlate with intellectual disability. With amelogenin PCR used for detecting the presence of a Y chromosome, this assay can also detect males with Klinefelter syndrome (KS) (47, XXY). We identified 64 males with FMR1 methylation and, after confirmatory testing, found seven to have full-mutation FXS and 57 to have KS. Because the precise incidence of KS is known, we used our observed KS incidence as a sentinel to assess ascertainment quality and showed that our KS incidence of 1 in 633 newborn males was not significantly different from the literature incidence of 1 in 576 (p = 0.79). The seven FXS males revealed an FXS incidence in males of 1 in 5161 (95% confidence interval of 1 in 10,653-1 in 2500), consistent with some earlier indirect estimates. Given the trials now underway for possible FXS treatments, this method could be used in newborn or infant screening as a way of ensuring early interventions for FXS.


Subject(s)
DNA Methylation , DNA/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Neonatal Screening/methods , Base Sequence , DNA Mutational Analysis , DNA Primers/chemistry , Humans , Infant, Newborn , Klinefelter Syndrome/diagnosis , Klinefelter Syndrome/genetics , Male , Molecular Sequence Data , Promoter Regions, Genetic , Sensitivity and Specificity , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...