Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892407

ABSTRACT

Breast cancer is influenced by factors such as diet, a sedentary lifestyle, obesity, and postmenopausal status, which are all linked to prolonged hormonal and inflammatory exposure. Physical activity offers protection against breast cancer by modulating hormones, immune responses, and oxidative defenses. This study aimed to assess how a prolonged high-fat diet (HFD) affects the effectiveness of physical activity in preventing and managing mammary tumorigenesis. Ovariectomised C57BL/6 mice were provided with an enriched environment to induce spontaneous physical activity while being fed HFD. After 44 days (short-term, ST HFD) or 88 days (long-term, LT HFD), syngenic EO771 cells were implanted into mammary glands, and tumour growth was monitored until sacrifice. Despite similar physical activity and food intake, the LT HFD group exhibited higher visceral adipose tissue mass and reduced skeletal muscle mass. In the tumour microenvironment, the LT HFD group showed decreased NK cells and TCD8+ cells, with a trend toward increased T regulatory cells, leading to a collapse of the T8/Treg ratio. Additionally, the LT HFD group displayed decreased tumour triglyceride content and altered enzyme activities indicative of oxidative stress. Prolonged exposure to HFD was associated with tumour growth despite elevated physical activity, promoting a tolerogenic tumour microenvironment. Future studies should explore inter-organ exchanges between tumour and tissues.


Subject(s)
Diet, High-Fat , Mice, Inbred C57BL , Physical Conditioning, Animal , Tumor Microenvironment , Animals , Diet, High-Fat/adverse effects , Female , Mice , Oxidative Stress , Carcinogenesis , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/prevention & control , Cell Line, Tumor , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/prevention & control , Intra-Abdominal Fat/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
2.
J. physiol. biochem ; 78(2): 335–342, May. 2022. graf
Article in English | IBECS | ID: ibc-215962

ABSTRACT

Human cathelicidin refers to the cationic antimicrobial peptide hCAP18/LL-37. LL-37 is formed by cleavage of the propeptide hCAP18 coded by the CAMP gene. The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)D), has been shown to induce the CAMP gene expression through promoter activation. We previously failed to demonstrate in a clinical trial that supplementation of 25-hydroxyvitamin D (25(OH)D) improves LL-37 serum levels. The aim of this work was to evaluate the impact of 25(OH)D supplementation on intracellular expression of CAMP and secretion of LL-37 in an ex vivo model using the peripheral blood mononuclear cells (PBMC). PBMC collected from healthy donors and incubated with different concentrations of 25(OH)D (0 ng/ml: control (D0); 25 ng/ml: deficient (D25); 75 ng/ml: physiological (D75); 125 ng/ml: supraphysiological (D125)) were stimulated or not with lipopolysaccharide (LPS, 100 ng/ml) or synthetic double-stranded RNA Poly (I: C) (PIC, 10 µg/ml). The intracellular expressions of the CAMP gene and the hCAP18 peptide were measured respectively after 24-h and 48-h incubation periods. The concentration of LL-37 was determined in the culture medium after 48-h incubation. 25(OH)D significantly induced CAMP gene expression at 24 h with a maximum effect at a dose of D125 in either unstimulated (tenfold expression) or stimulated (LPS: 100-fold expression; PIC: 15-fold expression) conditions. Intracellular hCAP18 peptide was overexpressed at 48 h under unstimulated (1.5-fold, D125) and stimulated conditions, LPS (twofold, D125) and PIC (2.5-fold, D125). The secretion of LL-37 in the culture medium was significantly induced by 25(OH)D only in both stimulated (LPS and PIC) conditions in a dose-dependent manner. (AU)


Subject(s)
Humans , Leukocytes, Mononuclear , Lipopolysaccharides/pharmacology , France , Vitamin D , Antimicrobial Cationic Peptides , Calcifediol , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL