Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 291, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208349

ABSTRACT

The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for both existing and future clinical and molecular datasets. We validated the framework in collaboration with several major public-private partnership projects, demonstrating and delivering improvements across all aspects of FAIR and across a variety of datasets and their contexts. We therefore managed to establish the reproducibility and far-reaching applicability of our approach to FAIRification tasks.


Subject(s)
COVID-19 , Datasets as Topic , Humans , Pandemics , Public-Private Sector Partnerships , Reproducibility of Results
2.
Front Artif Intell ; 6: 1084001, 2023.
Article in English | MEDLINE | ID: mdl-37056913

ABSTRACT

Parkinson's Disease (PD) is the second most common age-related neurological disorder that leads to a range of motor and cognitive symptoms. A PD diagnosis is difficult since its symptoms are quite similar to those of other disorders, such as normal aging and essential tremor. When people reach 50, visible symptoms such as difficulties walking and communicating begin to emerge. Even though there is no cure for PD, certain medications can relieve some of the symptoms. Patients can maintain their lifestyles by controlling the complications caused by the disease. At this point, it is essential to detect this disease and prevent it from progressing. The diagnosis of the disease has been the subject of much research. In our project, we aim to detect PD using different types of Machine Learning (ML), and Deep Learning (DL) models such as Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) to differentiate between healthy and PD patients by voice signal features. The dataset taken from the University of California at Irvine (UCI) machine learning repository consisted of 195 voice recordings of examinations carried out on 31 patients. Moreover, our models were trained using different techniques such as Synthetic Minority Over-sampling Technique (SMOTE), Feature Selection, and hyperparameter tuning (GridSearchCV) to enhance their performance. At the end, we found that MLP and SVM with a ratio of 70:30 train/test split using GridSearchCV with SMOTE gave the best results for our project. MLP performed with an overall accuracy of 98.31%, an overall recall of 98%, an overall precision of 100%, and f1-score of 99%. In addition, SVM performed with an overall accuracy of 95%, an overall recall of 96%, an overall precision of 98%, and f1-score of 97%. The experimental results of this research imply that the proposed method can be used to reliably predict PD and can be easily incorporated into healthcare for diagnosis purposes.

3.
Drug Discov Today ; 28(4): 103510, 2023 04.
Article in English | MEDLINE | ID: mdl-36716952

ABSTRACT

The FAIR (findable, accessible, interoperable and reusable) principles are data management and stewardship guidelines aimed at increasing the effective use of scientific research data. Adherence to these principles in managing data assets in pharmaceutical research and development (R&D) offers pharmaceutical companies the potential to maximise the value of such assets, but the endeavour is costly and challenging. We describe the 'FAIR-Decide' framework, which aims to guide decision-making on the retrospective FAIRification of existing datasets by using business analysis techniques to estimate costs and expected benefits. This framework supports decision-making on FAIRification in the pharmaceutical R&D industry and can be integrated into a company's data management strategy.


Subject(s)
Drug Industry , Research , Retrospective Studies , Data Management , Pharmaceutical Preparations
4.
Drug Discov Today ; 27(8): 2080-2085, 2022 08.
Article in English | MEDLINE | ID: mdl-35595012

ABSTRACT

Despite the intuitive value of adopting the Findable, Accessible, Interoperable, and Reusable (FAIR) principles in both academic and industrial sectors, challenges exist in resourcing, balancing long- versus short-term priorities, and achieving technical implementation. This situation is exacerbated by the unclear mechanisms by which costs and benefits can be assessed when decisions on FAIR are made. Scientific and research and development (R&D) leadership need reliable evidence of the potential benefits and information on effective implementation mechanisms and remediating strategies. In this article, we describe procedures for cost-benefit evaluation, and identify best-practice approaches to support the decision-making process involved in FAIR implementation.


Subject(s)
Drug Discovery , Cost-Benefit Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...