Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 693, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121734

ABSTRACT

Intracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae. The bacteria, which belong to the new species Bordetella atropi, can infect the nematodes following a fecal-oral route, and reduce host life span and fecundity. Filamentation requires UDP-glucose biosynthesis and sensing, a highly conserved pathway that is used by other bacteria to detect rich conditions and inhibit cell division. Our results indicate that B. atropi uses a pathway that normally regulates bacterial cell size to trigger filamentation inside host cells, thus facilitating cell-to-cell dissemination.


Subject(s)
Bordetella/growth & development , Intestinal Mucosa/cytology , Rhabditoidea/cytology , Animals , Bordetella/classification , Bordetella/pathogenicity , Cell Division/genetics , Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Genome, Bacterial/genetics , Host-Pathogen Interactions , In Situ Hybridization, Fluorescence , Intestinal Mucosa/microbiology , Intracellular Space/microbiology , Metabolic Networks and Pathways/genetics , Microscopy, Electron, Transmission , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhabditoidea/genetics , Rhabditoidea/microbiology , Sequence Analysis, DNA , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...