Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nat Commun ; 13(1): 156, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013174

ABSTRACT

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Histocompatibility Antigens Class I/genetics , Pancreatic Neoplasms/genetics , Progranulins/genetics , Tumor Escape/genetics , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Adenocarcinoma/therapy , Animals , Antibodies, Neutralizing/pharmacology , Antigens, Viral/genetics , Antigens, Viral/immunology , Autophagy/drug effects , Autophagy/genetics , Autophagy/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Cell Movement/drug effects , Cohort Studies , Cytotoxicity, Immunologic , Gene Expression , Glycoproteins/genetics , Glycoproteins/immunology , Histocompatibility Antigens Class I/immunology , Humans , Lymphocytic choriomeningitis virus/genetics , Lymphocytic choriomeningitis virus/immunology , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/therapy , Peptide Fragments/genetics , Peptide Fragments/immunology , Progranulins/antagonists & inhibitors , Progranulins/immunology , Proteolysis , Survival Analysis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Xenograft Model Antitumor Assays
2.
Nat Commun ; 12(1): 5297, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489430

ABSTRACT

The protein kinase Akt plays a pivotal role in cellular processes. However, its isoforms' distinct functions have not been resolved to date, mainly due to the lack of suitable biochemical and cellular tools. Against this background, we present the development of an isoform-dependent Ba/F3 model system to translate biochemical results on isoform specificity to the cellular level. Our cellular model system complemented by protein X-ray crystallography and structure-based ligand design results in covalent-allosteric Akt inhibitors with unique selectivity profiles. In a first proof-of-concept, the developed molecules allow studies on isoform-selective effects of Akt inhibition in cancer cells. Thus, this study will pave the way to resolve isoform-selective roles in health and disease and foster the development of next-generation therapeutics with superior on-target properties.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphocytes/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Allosteric Regulation , Allosteric Site , Animals , Antineoplastic Agents/chemical synthesis , Cell Line , Drug Design , Gene Expression , HEK293 Cells , Humans , Inhibitory Concentration 50 , Lymphocytes/cytology , Lymphocytes/enzymology , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Small Molecule Libraries/chemical synthesis , Spodoptera , Structure-Activity Relationship
3.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: mdl-34016720

ABSTRACT

BACKGROUND: Amplification of the MYCN oncogene is a molecular hallmark of aggressive neuroblastoma (NB), a childhood cancer of the sympathetic nervous system. There is evidence that MYCN promotes a non-inflamed and T-cell infiltration-poor ('cold') tumor microenvironment (TME) by suppressing interferon signaling. This may explain, at least in part, why patients with NB seem to have little benefit from single-agent immune checkpoint blockade (ICB) therapy. Targeting MYCN or its effectors could be a strategy to convert a cold TME into a 'hot' (inflamed) TME and improve the efficacy of ICB therapy. METHODS: NB transcriptome analyses were used to identify epigenetic drivers of a T-cell infiltration-poor TME. Biological and molecular responses of NB cells to epigenetic drugs and interferon (IFN)-γ exposure were assessed by proliferation assays, immunoblotting, ELISA, qRT-PCR, RNA-seq and ChIP-qPCR as well as co-culture assays with T cells. RESULTS: We identified H3K9 euchromatic histone-lysine methyltransferases EHMT2 and EHMT1, also known as G9a and GLP, as epigenetic effectors of the MYCN-driven malignant phenotype and repressors of IFN-γ transcriptional responses in NB cells. EHMT inhibitors enhanced IFN-γ-induced expression of the Th1-type chemokines CXCL9 and CXCL10, key factors of T-cell recruitment into the TME. In MYCN-amplified NB cells, co-inhibition of EZH2 (enhancer of zeste homologue 2), a H3K27 histone methyltransferase cooperating with EHMTs, was needed for strong transcriptional responses to IFN-γ, in line with histone mark changes at CXCL9 and CXCL10 chemokine gene loci. EHMT and EZH2 inhibitor response gene signatures from NB cells were established as surrogate measures and revealed high EHMT and EZH2 activity in MYCN-amplified high-risk NBs with a cold immune phenotype. CONCLUSION: Our results delineate a strategy for targeted epigenetic immunomodulation of high-risk NBs, whereby EHMT inhibitors alone or in combination with EZH2 inhibitors (in particular, MYCN-amplified NBs) could promote a T-cell-infiltrated TME via enhanced Th1-type chemokine expression.


Subject(s)
Antineoplastic Agents/pharmacology , Chemokines/genetics , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Gene Amplification , Interferon-gamma/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , T-Lymphocytes/drug effects , Cell Line, Tumor , Chemokines/metabolism , Coculture Techniques , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Molecular Targeted Therapy , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome , Tumor Microenvironment
4.
Angew Chem Int Ed Engl ; 58(52): 18823-18829, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31584233

ABSTRACT

Isoforms of protein kinase Akt are involved in essential processes including cell proliferation, survival, and metabolism. However, their individual roles in health and disease have not been thoroughly evaluated. Thus, there is an urgent need for perturbation studies, preferably mediated by highly selective bioactive small molecules. Herein, we present a structure-guided approach for the design of structurally diverse and pharmacologically beneficial covalent-allosteric modifiers, which enabled an investigation of the isoform-specific preferences and the important residues within the allosteric site of the different isoforms. The biochemical, cellular, and structural evaluations revealed interactions responsible for the selective binding profiles. The isoform-selective covalent-allosteric Akt inhibitors that emerged from this approach showed a conclusive structure-activity relationship and broke ground in the development of selective probes to delineate the isoform-specific functions of Akt kinases.


Subject(s)
Allosteric Regulation/physiology , Allosteric Site/physiology , Protein Isoforms/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Humans , Structure-Activity Relationship
5.
Cancer Lett ; 445: 24-33, 2019 03 31.
Article in English | MEDLINE | ID: mdl-30611741

ABSTRACT

Medulloblastoma is the most prevalent central nervous system tumor in children. Targeted treatment approaches for patients with high-risk medulloblastoma are needed as current treatment regimens are not curative in many cases and cause significant therapy-related morbidity. Medulloblastoma harboring MYC amplification have the most aggressive clinical course and worst outcome. Targeting the BET protein BRD4 has significant anti-tumor effects in preclinical models of MYC-amplified medulloblastoma, however, in most cases these are not curative. We here assessed the therapeutic efficacy of the orally bioavailable BRD4 inhibitor, MK-8628, in preclinical models of medulloblastoma. MK-8628 showed therapeutic efficacy against in vitro and in vivo models of MYC-amplified medulloblastoma by inducing apoptotic cell death and cell cycle arrest. Gene expression analysis of cells treated with MK-8628 showed that anti-tumor effects were accompanied by significant repression of MYC transcription as well as disruption of MYC-regulated transcriptional programs. Additionally, we found that targeting of MYC protein stability through pharmacological PLK1 inhibition showed synergistic anti-medulloblastoma effects when combined with MK-8628 treatment. Thus, MK-8628 is effective against preclinical high-risk medulloblastoma models and its effects can be enhanced through simultaneous targeting of PLK1.


Subject(s)
Acetanilides/administration & dosage , Cerebellar Neoplasms/drug therapy , Heterocyclic Compounds, 3-Ring/administration & dosage , Medulloblastoma/drug therapy , Proto-Oncogene Proteins c-myc/chemistry , Pteridines/administration & dosage , Acetanilides/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Drug Synergism , Gene Amplification , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Protein Stability/drug effects , Proto-Oncogene Proteins c-myc/genetics , Pteridines/pharmacology , Xenograft Model Antitumor Assays
6.
Oncogene ; 38(15): 2690-2705, 2019 04.
Article in English | MEDLINE | ID: mdl-30538293

ABSTRACT

ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential. We show that mutant ALK downregulates the 'HMG-box transcription factor 1' (HBP1) through the PI3K-AKT-FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 itself is under negative control of MYCN through miR-17~92. Combined targeting of HBP1 by PI3K antagonists and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly reduces tumor growth, suggesting a novel targeted therapy option for high-risk neuroblastoma.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , High Mobility Group Proteins/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Repressor Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Forkhead Box Protein O3/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , MicroRNAs/genetics , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics
7.
Cancer Res ; 78(17): 4997-5010, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29844119

ABSTRACT

Despite advances in our understanding of the genetics of pancreatic ductal adenocarcinoma (PDAC), the efficacy of therapeutic regimens targeting aberrant signaling pathways remains highly limited. Therapeutic strategies are greatly hampered by the extensive desmoplasia that comprises heterogeneous cell populations. Notch signaling is a contentious pathway exerting opposite roles in tumorigenesis depending on cellular context. Advanced model systems are needed to gain more insights into complex signaling in the multilayered tumor microenvironment. In this study, we employed a dual recombinase-based in vivo strategy to modulate Notch signaling specifically in myeloid cells to dissect the tumorigenic role of Notch in PDAC stroma. Pancreas-specific KrasG12D activation and loss of Tp53 was induced using a Pdx1-Flp transgene, whereas Notch signaling was genetically targeted using a myeloid-targeting Lyz2-Cre strain for either activation of Notch2-IC or deletion of Rbpj. Myeloid-specific Notch activation significantly decreased tumor infiltration by protumorigenic M2 macrophages in spontaneous endogenous PDAC, which translated into significant survival benefit. Further characterization revealed upregulated antigen presentation and cytotoxic T effector phenotype upon Notch-induced M2 reduction. This approach is the first proof of concept for genetic targeting and reprogramming of myeloid cells in a complex disease model of PDAC and provides evidence for a regulatory role of Notch signaling in intratumoral immune phenotypes.Significance: This study provides insight into the role of myeloid-dependent NOTCH signaling in PDAC and accentuates the need to dissect differential roles of signaling pathways in different cellular components within the tumor microenvironment. Cancer Res; 78(17); 4997-5010. ©2018 AACR.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Cellular Reprogramming/genetics , Receptors, Notch/genetics , Adenocarcinoma/pathology , Animals , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Homeodomain Proteins/genetics , Humans , Macrophages/metabolism , Mice , Mice, Transgenic , Myeloid Cells/metabolism , Myeloid Cells/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Trans-Activators/genetics , Tumor Microenvironment/genetics , Tumor Suppressor Protein p53/genetics
8.
Oncoimmunology ; 6(6): e1320626, 2017.
Article in English | MEDLINE | ID: mdl-28680756

ABSTRACT

Immune checkpoint inhibitors have significantly improved the treatment of several cancers. T-cell infiltration and the number of neoantigens caused by tumor-specific mutations are correlated to favorable responses in cancers with a high mutation load. Accordingly, checkpoint immunotherapy is thought to be less effective in tumors with low mutation frequencies such as neuroblastoma, a neuroendocrine tumor of early childhood with poor outcome of the high-risk disease group. However, spontaneous regressions and paraneoplastic syndromes seen in neuroblastoma patients suggest substantial immunogenicity. Using an integrative transcriptomic approach, we investigated the molecular characteristics of T-cell infiltration in primary neuroblastomas as an indicator of pre-existing immune responses and potential responsiveness to checkpoint inhibition. Here, we report that a T-cell-poor microenvironment in primary metastatic neuroblastomas is associated with genomic amplification of the MYCN (N-Myc) proto-oncogene. These tumors exhibited lower interferon pathway activity and chemokine expression in line with reduced immune cell infiltration. Importantly, we identified a global role for N-Myc in the suppression of interferon and pro-inflammatory pathways in human and murine neuroblastoma cell lines. N-Myc depletion potently enhanced targeted interferon pathway activation by a small molecule agonist of the cGAS-STING innate immune pathway. This promoted chemokine expression including Cxcl10 and T-cell recruitment in microfluidics migration assays. Hence, our data suggest N-Myc inhibition plus targeted IFN activation as adjuvant strategy to enforce cytotoxic T-cell recruitment in MYCN-amplified neuroblastomas.

10.
Oncotarget ; 8(17): 27882-27891, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28427187

ABSTRACT

Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40-70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Cerebellar Neoplasms/drug therapy , Furans/pharmacology , Medulloblastoma/drug therapy , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Cerebellar Neoplasms/pathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Furans/therapeutic use , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Medulloblastoma/genetics , Medulloblastoma/mortality , Medulloblastoma/pathology , Mice , Mice, Nude , Mutation , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
11.
Clin Exp Ophthalmol ; 45(3): 288-296, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27647547

ABSTRACT

BACKGROUND: Retinoblastoma is the most common malignant cancer of the eye in children. Although metastatic retinoblastoma is rare, cure rates for this advanced disease remain below 50%. High-level polo-like kinase 1 expression in retinoblastomas has previously been shown to be correlated with adverse outcome parameters. Polo-like kinase 1 is a serine/threonine kinase involved in cell cycle regulation at the G2/M transition. Polo-like kinase 1 inhibition has been demonstrated to have anti-tumour effects in preclinical models of several paediatric tumours. Here, we assessed its efficacy against retinoblastoma cell lines. METHODS: Expression of polo-like kinase 1 was determined in a panel of retinoblastoma cell lines by polymerase chain reaction and western blot analysis. We analysed viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT assay), proliferation (5-bromo-2'-deoxyuridine enzyme-linked immunosorbent assay), cell cycle progression (propidium iodid staining) and apoptosis (cell death enzyme-linked immunosorbent assay) in three retinoblastoma cell lines after treatment with two adenosine triphosphate-competitive polo-like kinase 1 inhibitors, BI6727 or GSK461364. Activation of polo-like kinase 1 downstream signalling components including TP53 were assessed. RESULTS: Treatment of retinoblastoma cells with either BI6727 or GSK461364 reduced cell viability and proliferative capacity and induced both cell cycle arrest and apoptosis. Polo-like kinase 1 inhibition also induced the p53 signalling pathway. Analysis of key players in cell cycle control revealed that low nanomolar concentrations of either polo-like kinase 1 inhibitor upregulated cyclin B1 and increased activated cyclin-dependent kinase 1 (phosphorylated at Y15) in retinoblastoma cell lines. CONCLUSIONS: These preclinical data indicate that polo-like kinase 1 inhibitors could be useful as components in rationally designed chemotherapy protocols to treat patients with metastasized retinoblastoma in early phase clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Retinal Neoplasms/pathology , Retinoblastoma/pathology , Apoptosis/drug effects , Benzimidazoles/pharmacology , Blotting, Western , CDC2 Protein Kinase , Cell Cycle/drug effects , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin B1/metabolism , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Humans , Phosphorylation , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Pteridines/pharmacology , Real-Time Polymerase Chain Reaction , Retinal Neoplasms/genetics , Retinal Neoplasms/metabolism , Retinoblastoma/genetics , Retinoblastoma/metabolism , Thiophenes/pharmacology , Tumor Cells, Cultured , Polo-Like Kinase 1
12.
Oncotarget ; 8(1): 430-443, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27888795

ABSTRACT

Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Morpholines/therapeutic use , Neuroblastoma/drug therapy , Neurokinin-1 Receptor Antagonists/therapeutic use , Prodrugs/therapeutic use , Receptors, Neurokinin-1/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Aprepitant , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Evaluation, Preclinical , E2F2 Transcription Factor/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Gene Expression Profiling , Humans , Mice , Mice, Nude , Molecular Targeted Therapy/methods , Neuroblastoma/pathology , Treatment Outcome , Tumor Burden/drug effects , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
13.
Oncotarget ; 8(4): 6730-6741, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28036269

ABSTRACT

Polo-like kinase 1 (PLK1) is a serine/threonine kinase that promotes G2/M-phase transition, is expressed in elevated levels in high-risk neuroblastomas and correlates with unfavorable patient outcome. Recently, we and others have presented PLK1 as a potential drug target for neuroblastoma, and reported that the BI2536 PLK1 inhibitor showed antitumoral actvity in preclinical neuroblastoma models. Here we analyzed the effects of GSK461364, a competitive inhibitor for ATP binding to PLK1, on typical tumorigenic properties of preclinical in vitro and in vivo neuroblastoma models. GSK461364 treatment of neuroblastoma cell lines reduced cell viability and proliferative capacity, caused cell cycle arrest and massively induced apoptosis. These phenotypic consequences were induced by treatment in the low-dose nanomolar range, and were independent of MYCN copy number status. GSK461364 treatment strongly delayed established xenograft tumor growth in nude mice, and significantly increased survival time in the treatment group. These preclinical findings indicate PLK1 inhibitors may be effective for patients with high-risk or relapsed neuroblastomas with upregulated PLK1 and might be considered for entry into early phase clinical trials in pediatric patients.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Neuroblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Thiophenes/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Gene Dosage , Humans , Inhibitory Concentration 50 , Mice, Nude , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/enzymology , Neuroblastoma/genetics , Neuroblastoma/pathology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Time Factors , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
14.
Expert Rev Mol Diagn ; 16(12): 1307-1313, 2016 12.
Article in English | MEDLINE | ID: mdl-27813435

ABSTRACT

INTRODUCTION: Neuroblastoma is a solid cancer of childhood, which is devastating upon recurrence. Markers for minimal residual disease and early detection of relapse are eagerly awaited to improve the outcome of affected patients. Several miRNAs have been identified as key regulators of neuroblastoma pathogenesis. Areas covered: Here, we focus on miRNAs that have been linked to MYCN, a prominent oncogenic driver, and we review the hitherto known interactions between miRNAs and other important players in neuroblastoma. Expert commentary: Existing diagnostic miRNA signatures remain to be established in clinical settings. Moreover, inhibition of individual oncogenic miRNAs or enhancement of tumor suppressive miRNA function could represent a new therapeutic approach in cancer treatment, including NB.


Subject(s)
Biomarkers, Tumor , Neuroblastoma/diagnosis , Neuroblastoma/genetics , RNA, Untranslated/genetics , Cell Communication/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/therapy , Oncogenes , Real-Time Polymerase Chain Reaction , Treatment Outcome
15.
Oncotarget ; 7(46): 74415-74426, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27769070

ABSTRACT

Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.


Subject(s)
Gene Expression , Glial Fibrillary Acidic Protein/genetics , Glucagon/biosynthesis , N-Myc Proto-Oncogene Protein/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Profiling , Glial Fibrillary Acidic Protein/metabolism , Glucagonoma/genetics , Glucagonoma/metabolism , Glucagonoma/pathology , Humans , Immunohistochemistry , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein/metabolism , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Pituitary Neoplasms/pathology , Transcriptome
16.
Oncotarget ; 7(41): 66344-66359, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27572323

ABSTRACT

The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Histone Deacetylases/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/pathology , Tetraspanin 29/biosynthesis , Animals , Histone Deacetylases/genetics , Humans , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein/genetics , Neoplasm Invasiveness/genetics , Neuroblastoma/genetics , Neuroblastoma/metabolism , Tetraspanin 29/genetics
17.
Clin Cancer Res ; 22(10): 2470-81, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26631615

ABSTRACT

PURPOSE: Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. EXPERIMENTAL DESIGN: The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. RESULTS: OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. CONCLUSIONS: We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , N-Myc Proto-Oncogene Protein/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Transcription, Genetic/drug effects , Acetanilides/pharmacology , Animals , Cell Line , Cell Line, Tumor , Female , Gene Expression/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Mice , Mice, Nude , Nerve Tissue Proteins/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
18.
Cancer Lett ; 366(1): 123-32, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26123663

ABSTRACT

LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3'UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefore establishing an MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promoter, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underline the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process.


Subject(s)
Neuroblastoma/pathology , Nuclear Proteins/physiology , Oncogene Proteins/physiology , RNA-Binding Proteins/genetics , Cell Line, Tumor , Humans , MicroRNAs/genetics , N-Myc Proto-Oncogene Protein , Transcription, Genetic
19.
Nat Genet ; 47(8): 872-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26121086

ABSTRACT

Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Mutation , Neoplasm Recurrence, Local/genetics , Neuroblastoma/genetics , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Comparative Genomic Hybridization , DNA Copy Number Variations , DNA Helicases/genetics , Exome/genetics , Gene Expression Profiling/methods , Gene Frequency , Guanine Nucleotide Exchange Factors/genetics , Hippo Signaling Pathway , Humans , In Situ Hybridization, Fluorescence , Nerve Tissue Proteins/genetics , Neuroblastoma/pathology , Oligonucleotide Array Sequence Analysis , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Sequence Analysis, DNA/methods , Signal Transduction/genetics , Transcription Factors , YAP-Signaling Proteins
20.
Oncotarget ; 6(7): 5204-16, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25294817

ABSTRACT

MYCN is a transcription factor that plays key roles in both normal development and cancer. In neuroblastoma, MYCN acts as a major oncogenic driver through pleiotropic effects regulated by multiple protein encoding genes as well as microRNAs (miRNAs). MYCN activity is tightly controlled at the level of transcription and protein stability through various mechanisms. Like most genes, MYCN is further controlled by miRNAs, but the full complement of all miRNAs implicated in this process has not been determined through an unbiased approach. To elucidate the role of miRNAs in regulation of MYCN, we thus explored the MYCN-miRNA interactome to establish miRNAs controlling MYCN expression levels. We combined results from an unbiased and genome-wide high-throughput miRNA target reporter screen with miRNA and mRNA expression data from patients and a murine neuroblastoma progression model. We identified 29 miRNAs targeting MYCN, of which 12 miRNAs are inversely correlated with MYCN expression or activity in neuroblastoma tumor tissue. The majority of MYCN-targeting miRNAs in neuroblastoma showed a decrease in expression during murine MYCN-driven neuroblastoma tumor development. Therefore, we provide evidence that MYCN-targeting miRNAs are preferentially downregulated in MYCN-driven neuroblastoma, suggesting that MYCN negatively controls the expression of these miRNAs, to safeguard its expression.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Proto-Oncogene Proteins/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , Humans , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL