Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Medicina (Kaunas) ; 60(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39202523

ABSTRACT

D-waves (also called direct waves) result from the direct activation of fast-conducting, thickly myelinated corticospinal tract (CST) fibres after a single electrical stimulus. During intraoperative neurophysiological monitoring, D-waves are used to assess the long-term motor outcomes of patients undergoing surgery for intramedullary spinal cord tumours, selected cases of intradural extramedullary tumours and surgery for syringomyelia. In the present manuscript, we discuss D-wave monitoring and its role as a tool for monitoring the CST during spinal cord surgery. We describe the neurophysiological background and provide some recommendations for recording and stimulation, as well as possible future perspectives. Further, we introduce the concept of anti D-wave and present an illustrative case with successful recordings.


Subject(s)
Spinal Cord Neoplasms , Humans , Spinal Cord Neoplasms/surgery , Spinal Cord Neoplasms/physiopathology , Intraoperative Neurophysiological Monitoring/methods , Pyramidal Tracts/physiopathology , Monitoring, Intraoperative/methods , Male
2.
Clin Neurophysiol ; 161: 256-267, 2024 May.
Article in English | MEDLINE | ID: mdl-38521679

ABSTRACT

OBJECTIVE: We investigated the feasibility of recording cortico-cortical evoked potentials (CCEPs) in patients with low- and high-grade glioma. We compared CCEPs during awake and asleep surgery, as well as those stimulated from the functional Broca area and recorded from the functional Wernicke area (BtW), and vice versa (WtB). We also analyzed CCEP properties according to tumor location, histopathology, and aphasia. METHODS: We included 20 patients who underwent minimally invasive surgery in an asleep-awake-asleep setting. Strip electrode placement was guided by classical Penfield stimulation of positive language sites and fiber tracking of the arcuate fascicle. CCEPs were elicited with alternating monophasic single pulses of 1.1 Hz frequency and recorded as averaged signals. Intraoperatively, there was no post-processing of the signal. RESULTS: Ninety-seven CCEPs from 19 patients were analyzed. There was no significant difference in CCEP properties when comparing awake versus asleep, nor BtW versus WtB. CCEP amplitude and latency were affected by tumor location and histopathology. CCEP features after tumor resection correlated with short- and long-term postoperative aphasia. CONCLUSION: CCEP recordings are feasible during minimally invasive surgery. CCEPs might be surrogate markers for altered connectivity of the language tracts. SIGNIFICANCE: This study may guide the incorporation of CCEPs into intraoperative neurophysiological monitoring.


Subject(s)
Brain Neoplasms , Evoked Potentials , Glioma , Language , Minimally Invasive Surgical Procedures , Humans , Glioma/surgery , Glioma/physiopathology , Male , Female , Brain Neoplasms/surgery , Brain Neoplasms/physiopathology , Middle Aged , Adult , Aged , Evoked Potentials/physiology , Minimally Invasive Surgical Procedures/methods , Electric Stimulation/methods , Intraoperative Neurophysiological Monitoring/methods , Cerebral Cortex/physiopathology , Cerebral Cortex/surgery , Wakefulness/physiology
3.
Clin Neurophysiol ; 151: 50-58, 2023 07.
Article in English | MEDLINE | ID: mdl-37156120

ABSTRACT

OBJECTIVE: The aim of this feasibility study was to investigate the properties of median nerve somatosensory evoked potential (SEPs) recorded from segmented Deep Brain Stimulation (DBS) leads in the sensory thalamus (VP) and how they relate to clinical and anatomical findings. METHODS: We analyzed four patients with central post-stroke pain and DBS electrodes placed in the VP. Median nerve SEPs were recorded with referential and bipolar montages. Electrode positions were correlated with thalamus anatomy and tractography-based medial lemniscus. Early postoperative clinical paresthesia mapping was performed by an independent pain nurse. Finally, we performed frequency and time-frequency analyses of the signals. RESULTS: We observed differences of SEP amplitudes recorded along different directions in the VP. SEP amplitudes did not clearly correlate to both atlas-based anatomical position and fiber-tracking results of the medial lemniscus. However, the contacts of highest SEP amplitude correlated with the contacts of lowest effect-threshold to induce paraesthesia. CONCLUSIONS: SEP recordings from directional DBS leads offer additional information about the neurophysiological (re)organization of the sensory thalamus. SIGNIFICANCE: Directional recordings of thalamic SEPs bear the potential to assist clinical decision-making in DBS for pain.


Subject(s)
Pain , Thalamus , Humans , Thalamus/physiology , Evoked Potentials, Somatosensory/physiology , Electrodes , Median Nerve
4.
Cancers (Basel) ; 14(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36010979

ABSTRACT

Data on intraoperative neurophysiological monitoring (IOM) during spinal meningioma (SM) surgery are scarce. The aim of this study was to assess the role of IOM and its impact on post-operative functional outcome. Eighty-six consecutive surgically treated SM patients were included. We assessed pre and post-operative Modified McCormick Scale (mMCS), radiological and histopathological data and IOM findings. Degree of cord compression was associated with preoperative mMCS and existence of motor or sensory deficits (p < 0.001). IOM was used in 51 (59.3%) patients (IOM-group). Median pre and post-operative mMCS was II and I, respectively (p < 0.001). Fifty-seven (66.3%) patients showed an improvement of at least one grade in the mMCS one year after surgery. In the IOM group, only one patient had worsened neurological status, and this was correctly predicted by alterations in evoked potentials. Analysis of both groups found no significantly better neurological outcome in the IOM group, but IOM led to changes in surgical strategy in complex cases. Resection of SM is safe and leads to improved neurological outcome in most cases. Both complication and tumor recurrence rates were low. We recommend the use of IOM in surgically challenging cases, such as completely ossified or large ventrolateral SM.

5.
Front Psychol ; 6: 503, 2015.
Article in English | MEDLINE | ID: mdl-25983697

ABSTRACT

Interoception is the moment-to-moment sensing of the physiological condition of the body. The multimodal sources of interoception can be classified into two different streams of afferents: an internal pathway of signals arising from core structures (i.e., heart, blood vessels, and bronchi) and an external pathway of body-mapped sensations (i.e., chemosensation and pain) arising from peripersonal space. This study examines differential processing along these streams within the insular cortex (IC) and their subcortical tracts connecting frontotemporal networks. Two rare patients presenting focal lesions of the IC (insular lesion, IL) or its subcortical tracts (subcortical lesion, SL) were tested. Internally generated interoceptive streams were assessed through a heartbeat detection (HBD) task, while those externally triggered were tapped via taste, smell, and pain recognition tasks. A differential pattern was observed. The IC patient showed impaired internal signal processing while the SL patient exhibited external perception deficits. Such selective deficits remained even when comparing each patient with a group of healthy controls and a group of brain-damaged patients. These outcomes suggest the existence of distinguishable interoceptive streams. Results are discussed in relation with neuroanatomical substrates, involving a fronto-insulo-temporal network for interoceptive and cognitive contextual integration.

SELECTION OF CITATIONS
SEARCH DETAIL