Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Environ Sci Pollut Res Int ; 31(24): 35952-35968, 2024 May.
Article En | MEDLINE | ID: mdl-38743336

The green microalga Chlorella vulgaris was used as a test organism during this study for evaluation of the impact of different heavy metal stress, Mn2+, Co2+, and Zn2+, on enhancing the biodiesel production. The algal cultures were grown for 13 days under heavy metal stress after which were subjected to estimation of growth, some primary metabolites, lipid, and fatty acid profiles. The maximum lipid accumulation (283.30 mg/g CDW) was recorded in the algal culture treated with 3 µM cobalt nitrate. Application of 2 mM manganese chloride; 1, 2, and 3 µM cobalt nitrate; and 0.2, 0.4, and 0.6 mM zinc sulfate caused highly significant increases in the lipid contents amounting to 183.8, 191.4, 230.6, 283.3, 176.3, 226.0, and 212.1 mg/g CDW, respectively, in comparison to control (153.4 mg/g CDW). The maximum proportion of saturated fatty acids (SFA) (64.44%) was noted in the culture treated with 6 mM MnCl2 due to the existence of palmitic acid (C16:0), stearic acid (C18:0), and pentadecylic acid (C15:0) which are represented by 53.59%, 5.96%, and 1.37%, respectively, of the total FAs. Relative increase in energy compound (REEC) showed that 1, 2, and 3 µM Co2+ lead to the highest stimulation in lipid and carbohydrate contents to 0.207, 0.352, and 0.329 × 103%, respectively. Empirical formulas were used for the assessment of biodiesel fuel properties based on FAME composition. The estimated properties met the prescribed international standard criteria.


Biofuels , Chlorella vulgaris , Fatty Acids , Metals, Heavy , Chlorella vulgaris/drug effects , Chlorella vulgaris/metabolism
2.
Medicina (Kaunas) ; 60(3)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38541241

Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 µg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.


Adhesins, Bacterial , Anti-Infective Agents , Metal Nanoparticles , Polyphenols , Solanum lycopersicum , Humans , Silver/pharmacology , Antioxidants/pharmacology , Virulence , Metal Nanoparticles/therapeutic use , Hydrogen Peroxide/pharmacology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Biofilms , Anti-Inflammatory Agents/pharmacology
3.
Int J Biol Macromol ; 259(Pt 2): 129307, 2024 Feb.
Article En | MEDLINE | ID: mdl-38199545

Protein-rich seaweeds are regarded as having commercial significance due to their numerous industrial applications. The green seaweed Halimeda opuntia was used during this study for the preparation of bioplastic film. A thin bioplastic film with better physical and mechanical properties was produced by optimizing the ratio of polyvinyl alcohol (PVA) to seaweed biomass. The films obtained were characterized by their thickness, tensile strength, elongation at break, Young's modulus, moisture absorption resistance, and solubility. To evaluate the composition and potential for chemical reactions of the films, an FTIR spectroscopy examination was conducted. Whereas TG-DTA and AFM were performed on films with high mechanical properties. The bioplastic film produced when algae percent was tripled in PVA concentration had better physical and mechanical characteristics, and the bioplastic films degraded in the environment within a short time. According to the current study, seaweed might serve as an alternative source for the production of bioplastic, which could help minimize the use of non-biodegradable plastics.


Opuntia , Seaweed , Chemical Phenomena , Tensile Strength , Biopolymers
5.
Diabetes Metab Syndr Obes ; 16: 515-522, 2023.
Article En | MEDLINE | ID: mdl-36852180

Background and Aims: SARS-CoV-2 infection has been recorded in 230 countries to date. Obesity has a negative impact on one's quality of life and is one of the main causes of mortality globally. Obesity affects the immune system, making the host more susceptible to infectious infections. Also, obesity commonly provokes the severity of respiratory diseases so the correlation of LEP rs7799039 Polymorphism in corpulent patients with COVID-19 infection was clearly investigated in the current study. Methods: A total of 232 patients were recruited, 116 patients were obese with COVID-19 infection, and 116 patients were non obese COVID-19. Fasting blood glucose test (FBG), hemoglobin A1C (HbA1C), complete blood count (CBC), international normalized ratio (INR), urea, alanine transaminase (ALT), aspartate aminotransferase (AST), D dimer and C-reactive protein (CRP) were estimated. C.T. scan was performed for each patient, and C.T. severity score was calculated. Genotyping for the leptin rs7799039 SNPs was performed by TaqMan® (Applied Biosystems Step One TM Real-time PCR). Results: Regarding LEP polymorphism, all individuals of non-obese groups significantly had the homozygous allele GG (100%), whereas only 56% of obese groups had GG alleles (P = 0.001). The severity scores significantly (P = 0.001) varied regarding LEP polymorphism regarding Rs7799039, where the largest proportion of those with Grade IV had the homozygous allele AA (57.1%). Conclusion: There was a correlation between the leptin gene allelic discrimination and COVID-19 CT brutality in obese patients. The A allele was considered a risk factor for severity in COVID-19 patients while the G allele contributes to decreasing that risk.

6.
Environ Sci Pollut Res Int ; 28(2): 1801-1811, 2021 Jan.
Article En | MEDLINE | ID: mdl-32857306

Spirulina platensis (Sp) or Amphora coffeaeformis (Am) are good candidates as an in-feed antibiotic substitute for broilers. This work was performed to investigate the effects of Sp and Am on the growth performance, intestinal microbial population, physiological responses, and blood biochemical constituents in broiler chickens. Fifty-one-day old Cobb broilers (with initial body weights 50-55 g) were allocated to five groups. Each treatment group had five replicate pens with two birds each. The experiments lasted for 35 days. The 1st group had basal diet (control group). The 2nd and 3rd groups received basal diet, along with 5- or 10-g/kg Sp as a feed ingredient, respectively. While the 4th and 5th groups received basal diet, along with 5- or 10-g/kg Am as a feed ingredient, respectively. Data analysis revealed significantly higher body weight gains (P ≤ 0.05) with higher Sp or Am levels and, in turn, linear improvements (P ≤ 0.05) in feed conversion values. In addition, intestinal Lactobacillus sp. was increased, and Escherichia coli populations were decreased by both dietary Sp levels or Am levels. Furthermore, the liver (% body weight) was significantly decreased (P ≤ 0.05) and the heart (% body weight) was significantly increased (P ≤ 0.05) with higher Sp or Am levels in comparison with untreated control. In conclusion, dietary inclusion with 10 g/kg of Sp and Am could improve the growth performance, serum biochemical parameters and intestinal microbial population in broiler chickens.


Chickens , Spirulina , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements
7.
Int J Radiat Biol ; 97(2): 265-275, 2021.
Article En | MEDLINE | ID: mdl-33196340

BACKGROUND: Global warming directly influencing ozone layer depletion, which eventually is increasing ultraviolet radiation penetration having far-reaching impacts on living biota. This particularly influences the primary producer microalgae which are the basic unit of food webs in the aquatic habitats. Therefore, it is necessary to concentrate the research at this micro-level to understand the harmful impact of increased UV-B radiation ever before. Consequently, the present attempt aimed to focus on the influence of UV-B on growth criteria, photosynthetic pigments, some metabolites, and ultrastructure of the freshwater cyanobacteria, Planktothrix cryptovaginata (Microcoleaceae), Nostoc carneum (Nostocaceae), Microcystis aeruginosa (Microcystaceae), the Chlorophyte Scenedesmus acutus (Scenedesmaceae), and the marine Cyanobacterium Microcystis (Microcystaceae). METHODS: The cultures of investigated algae were subjected directly to different duration periods (1, 3, 5, and 7 h) of artificial UV-B in addition to unirradiated control culture and allowed to grow for 10 days, after which the algal samples were analyzed for growth, photosynthetic activities, primary metabolities and cellular ultrastructure. RESULTS: A remarkable inhibitory influence of UV-B was observed on growth criteria (measured as optical density and dry weight) and photosynthetic pigments of P. cryptovaginata, N. carneum, M. aeruginosa, S. acutus, and marine Microcystis. Where increasing the exposure time of UV-B was accompanied by increased inhibition. The variation in carbohydrate and protein contents under UV stress was based on the exposure periods and the algal species. The variation in algal ultrastructure by UV-B stress was noticed by an Electron Microscope. Cells damage and lysis, cell wall and cell membrane ruptured and release of intracellular substances, loss of cell inclusion, plasmolysis and necrosis, or apoptosis of the algal cells were observed by exposure to 7 h of UV-B. CONCLUSION: Exposure to UV-B has a marked harmful impact on the growth, pigments, and metabolic activity, as well as the cellular ultrastructure of some cyanobacteria and chlorophytes.


Chlorophyta/radiation effects , Cyanobacteria/radiation effects , Photosynthesis/radiation effects , Ultraviolet Rays/adverse effects , Chlorophyta/growth & development , Chlorophyta/metabolism , Chlorophyta/ultrastructure , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Microcystis/radiation effects , Microscopy, Electron, Scanning , Scenedesmus/radiation effects
8.
Int J Radiat Biol ; 96(9): 1192-1206, 2020 09.
Article En | MEDLINE | ID: mdl-32659138

BACKGROUND: UV radiation and its impact on living organisms became an essential concern over the past three decades and will be essential in the years to come. So, the present investigation was devoted to examining the impact of artificial UV-B radiation on the accumulation of amino acids and MDA contents as well as some antioxidant enzymes activities in three freshwater cyanobacterial species; Planktothrix cryptovaginata, Nostoc carneum and Microcystis aeruginosa, one freshwater green alga; Scenedesmus acutus and one marine cyanobacterium; Microcystis. METHODS: The algal cultures were exposed directly to artificial UV-B radiation for 1, 3, 5, and 7 hours and amino acids, MDA contents, and the antioxidant enzyme activities; CAT, POD, APX, and SOD were analyzed. RESULTS: The data obtained indicated that alteration in MDA and antioxidant enzymes by UV stress depends on the algal species and the exposure time. The treatment of the investigated algae with different periods of UV-B exposure stimulated the biosynthesis of some individual amino acids and inhibited the accumulation of some others. In some cases, exposure to UV-B was accompanied by the disappearance of some amino acids. In addition, UV-B exposure for 3 hours stimulated the accumulation of total amino acids in M. aeruginosa and S. acutus, while 7 hours of UV-B enhanced the biosynthesis of total amino acids in M. aeruginosa only from the investigated algae. CONCLUSION: Exposure of some cyanobacteria and green algae to UV-B radiation stimulated the biosynthesis of some individual amino acids and inhibited the accumulation or accompanied by the disappearance of some others. However, the alteration in MDA and antioxidant enzymes by UV stress depends on the algal species and the exposure time.


Amino Acids/metabolism , Antioxidants/metabolism , Chlorophyta/radiation effects , Cyanobacteria/radiation effects , Lipid Peroxidation/radiation effects , Ultraviolet Rays , Chlorophyta/enzymology , Chlorophyta/metabolism , Cyanobacteria/enzymology , Cyanobacteria/metabolism
9.
Sci Rep ; 7(1): 10537, 2017 09 05.
Article En | MEDLINE | ID: mdl-28874670

The present study evaluates the potential of Sar gassum muticum (Sar) and Jan ia rubens (Jan) seaweeds for enhancing growth and mitigating soil-salinity in chickpea (Cicer arietinum L.). Under control conditions, Sar and Jan extracts improved chickpea growth which was attributed to their potential for increasing photosynthetic pigments, K+ and amino acids, particularly proline, in comparison with water-sprayed control. Upon stress imposition, chickpea growth was reduced in NaCl concentration-dependent manner, and principal component analysis (PCA) revealed Na+ accumulation and oxidative damage as major determinants of sensitivity at high salinity. Furthermore, amino acid quantification indicated activation/deactivation of overall metabolism in roots/shoots, as an adaptive strategy, for maintaining plant growth under salt stress. Sar and Jan extract supplementations provided stress amelioration, and PCA confirmed that improved growth parameters at high salinity were associated with enhanced activities of superoxide dismutase and peroxidase. Besides, four key amino acids, including serine, threonine, proline and aspartic acids, were identified from roots which maximally contribute to Sar- and Jan-mediated stress amelioration. Sar showed higher effectiveness than Jan under both control and salt stress conditions. Our findings highlight "bio-stimulant" properties of two seaweeds and provide mechanistic insight into their salt-ameliorating action which is relevant for both basic and applied research.


Amino Acids/metabolism , Cicer/drug effects , Plant Extracts/pharmacology , Salt Stress , Seaweed/chemistry , Cicer/growth & development , Cicer/metabolism , Oxidative Stress , Peroxidase/metabolism , Plant Proteins/metabolism , Sodium/metabolism , Superoxide Dismutase/metabolism
...