ABSTRACT
Pesticides employed worldwide for crop protection easily reach aquatic systems, which act as the main reservoirs, and become a risk factor for aquatic fauna. Fipronil is a broad-spectrum insecticide acting on the insect nervous system; however, other effects and systems unrelated to this mechanism could be affected in non-target organisms. Thus, the present study aimed to assess the impact of fipronil on the suborganismal response (gene expression and enzymatic activity) of Chironomus riparius larvae as a model organism in ecotoxicology. To this end, short-term toxicity tests were carried out with fourth-instar larvae exposed to 0.001, 0.01, and 0.1 µg L-1 of fipronil for 24 and 96 h. Messenger RNA levels of 42 genes related to diverse metabolic pathways were analyzed by real-time polymerase chain reaction, complemented with catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities. Few effects were observed at 24 h; however, after longer exposure (96 h), genes involved in the endocrine, detoxification, stress, and immune response pathways were altered. Moreover, fipronil at 96 h increased CAT and GST activity at 0.01 µg L-1 and AChE at the highest concentrations. The results demonstrate that even low environmentally relevant fipronil concentrations can modulate the molecular response of several cellular pathways in C. riparius after short-term exposure. These results bring new information about the underlying response of fipronil and its mode of action on a key aquatic invertebrate. Despite no effects on mortality, strong modulation at the suborganismal level emphasizes the advantage of biomarkers as early damage responses and the harmful impact of this pesticide on freshwater organisms. Environ Toxicol Chem 2024;43:405-417. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Subject(s)
Chironomidae , Insecticides , Pyrazoles , Water Pollutants, Chemical , Animals , Insecticides/toxicity , Chironomidae/genetics , Acetylcholinesterase/metabolism , Larva/metabolism , Water Pollutants, Chemical/toxicityABSTRACT
The Aquidauana River is an important ecological corridor in the Pantanal biome. However, the growth of agricultural and urban areas along its banks has contributed to the deterioration of its water quality, consequently putting the aquatic biota at risk. Our objectives were to evaluate: 1) the composition of the landscape around six sampling sites located in the Aquidauana River middle section; and 2) the quality of its water by determining limnological parameters, concentrations of contaminants of emerging concern (CECs), and the risks to native aquatic biota. Water samples were collected in November 2020. We observed the conversion of native riparian vegetation to extensive pasture areas and anthropic occupation around the sampling sites. We observed that the chlorophyll and total ammoniacal nitrogen values were above the standards established by Brazilian legislation in all samples. Studies focused on the quantification of CECs in the Pantanal waters are scarce, and to the best of our knowledge, this is the first study that investigated the presence of pharmaceuticals in the Aquidauana River. All 30 CECs analyzed were detected in at least one water sample. Eleven CECs were quantified with eight pesticides (atrazine, diuron, hexazinone, tebuthiuron, azoxystrobin, carbendazim, tebuconazole, and fipronil) and one atrazine degradation product (atrazine-2-hydroxy), caffeine, and bisphenol A. The concentrations of atrazine herbicide observed in the water samples pose risks for protecting aquatic biota (RQs >1). Therefore, the native biota of the Pantanal biome is vulnerable to several types of toxic contaminants observed in the water, which can cause the disappearance of native and endemic species in this region. Establishing a monitoring program, improving sanitation infrastructure, and intensifying good agricultural practices are essential for reducing and controlling the entry of CECs into the Aquidauana River and the Pantanal water system.
Subject(s)
Atrazine , Pesticides , Water Pollutants, Chemical , Environmental Monitoring , Brazil , Water Pollutants, Chemical/analysis , Pesticides/analysis , Rivers/chemistryABSTRACT
Brazil is one of the largest pesticide consumers in the world. In the last few years, the use of permissive environmental laws and newly authorized pesticide formulations has been enlarged. Thus, the intensive and inadequate use of pesticides may present a risk to human health since these compounds may move between environmental compartments. Outdoor air samples were collected using low-volume samplers at Arapongas city in the state of Paraná, Brazil, between February and November of 2017. Polyurethane foam (PUF) cartridges were presented as a good choice to collect pesticides from atmospheric gas phase samples when compared to styrene-divinylbenzene (XAD-2). Lower limits of quantitation were obtained with PUF cartridges, which allowed a greater number of samples to be quantified in PUF than in XAD-2. Atrazine and trifluralin were quantified for the first time in Brazilian air samples. The levels of concentration ranged between 192-1731 pg m-3 (chlorpyrifos), 136-1345 pg m-3 (atrazine) and 184-1189 pg m-3 (trifluralin). Alachlor has been out of market in Brazil since 2013, and thus it was not detected in any gas phase sample. The highest daily inhalation exposure was observed in infants, 1 × 10-6 mg kg-1 d-1 for atrazine, chlorpyrifos and trifluralin. None of the analyzed pesticides were associated with a hazardous quotient (HQ) > 1, considering the worst-case scenario for infants, indicating that there is no risk associated with the exposed population. Cancer risk assessment for trifluralin resulted in values below 1 × 10-6, therefore not indicating any significant risk to human health.