Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Trends Cell Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960851

ABSTRACT

Mutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage. Consistently, the behavior and properties of p53 mutants are altered by the context. This article aims to provide a balanced summary of the evolving evidence regarding the contribution of p53 mutants in the biology of cancer while contemplating alternative frameworks to decipher the complexity of p53 mutants within their physiological contexts.

2.
Gut ; 73(8): 1321-1335, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38670629

ABSTRACT

OBJECTIVE: The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN: We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS: In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS: Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Phenotype , Semaphorin-3A , Animals , Humans , Mice , Axon Guidance/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement/genetics , Neuropilin-1/metabolism , Neuropilin-1/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Semaphorin-3A/metabolism , Semaphorin-3A/genetics , Signal Transduction
3.
Discov Oncol ; 15(1): 80, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512353

ABSTRACT

Renal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction of 2-3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent germline mutations in BRCA1 and RAD51 genes. This case displays an unusual high mutational burden and chromosomal aberrations compared to the typical profile of renal cell carcinoma. Mutational analysis on whole genome sequencing revealed an enrichment of the MMR2 mutational signature, which is indicative of impaired DNA repair capacity. Overall, the tumor displayed a profile of unusual high genomic instability which suggests a possible origin from germline predisposing mutations in the DNA repair genes BRCA1 and RAD51. While BRCA1 and RAD51 germline mutations are well-characterised in breast and ovarian cancer, their role in renal cell carcinoma is still largely unexplored. The genomic instability detected in this case of renal cell carcinoma, along with the presence of unusual mutations, might offer support to clinicians for the development of patient-tailored therapies.

4.
Cell Death Differ ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38379088

ABSTRACT

Genomic instability, a hallmark of cancer, is a direct consequence of the inactivation of the tumor suppressor protein p53. Genetically modified mouse models and human tumor samples have revealed that p53 loss results in extensive chromosomal abnormalities, from copy number alterations to structural rearrangements. In this perspective article we explore the multifaceted relationship between p53, genomic stability, and epigenetic control, highlighting its significance in cancer biology. p53 emerges as a critical regulator of DNA repair mechanisms, influencing key components of repair pathways and directly participating in DNA repair processes. p53 role in genomic integrity however extends beyond its canonical functions. p53 influences also epigenetic landscape, where it modulates DNA methylation and histone modifications. This epigenetic control impacts the expression of genes involved in tumor suppression and oncogenesis. Notably, p53 ability to ensure cellular response to DNA demethylation contributes to the maintenance of genomic stability by preventing unscheduled transcription of repetitive non-coding genomic regions. This latter indicates a causative relationship between the control of epigenetic stability and the maintenance of genomic integrity in p53-mediated tumor suppression. Understanding these mechanisms offers promising avenues for innovative therapeutic strategies targeting epigenetic dysregulation in cancer and emphasizes the need for further research to unravel the complexities of this relationship. Ultimately, these insights hold the potential to transform cancer treatment and prevention strategies.

5.
Antioxidants (Basel) ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38247474

ABSTRACT

To characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2. To obtain more detailed and specific information on the modes-of-action, the effects on energy metabolism (respiration and glycolysis) were measured. Ber, rotenone and MPP inhibited the mitochondrial respiratory chain and they shared complex I as the target. This group of toxicants was further evaluated by metabolomics under experimental conditions that did not deplete ATP. Ber (204 changed metabolites) showed similar effects as MPP and rotenone. The overall metabolic situation was characterized by oxidative stress, an over-abundance of NADH (>1000% increase) and a re-routing of metabolism in order to dispose of the nitrogen resulting from increased amino acid turnover. This unique overall pattern led to the accumulation of metabolites known as biomarkers of neurodegeneration (saccharopine, aminoadipate and branched-chain ketoacids). These findings suggest that neurotoxicity of mitochondrial inhibitors may result from an ensemble of metabolic changes rather than from a simple ATP depletion. The combi-omics approach used here provided richer and more specific MoA data than the more common transcriptomics analysis alone. As Ber, a human drug and food supplement, mimicked closely the mode-of-action of known neurotoxicants, its potential hazard requires further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL