Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 730, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184708

ABSTRACT

Extracellular vesicles (EVs) are lipid-bilayered particles, containing various biomolecules, including nucleic acids, lipids, and proteins, released by cells from all the domains of life and performing multiple communication functions. Evidence suggests that the interaction between host immune cells and fungal EVs induces modulation of the immune system. Most of the studies on fungal EVs have been conducted in the context of fungal infections; therefore, there is a knowledge gap in what concerns the production of EVs by yeasts in other contexts rather than infection and that may affect human health. In this work, we characterized EVs obtained by Saccharomyces cerevisiae and Pichia fermentans strains isolated from a fermented milk product with probiotic properties. The immunomodulation abilities of EVs produced by these strains have been studied in vitro through immune assays after internalization from human monocyte-derived dendritic cells. Results showed a significant reduction in antigen presentation activity of dendritic cells treated with the fermented milk EVs. The small RNA fraction of EVs contained mainly yeast mRNA sequences, with a few molecular functions enriched in strains of two different species isolated from the fermented milk. Our results suggest that one of the mechanisms behind the anti-inflammatory properties of probiotic foods could be mediated by the interactions of human immune cells with yeast EVs.


Subject(s)
Cultured Milk Products , Extracellular Vesicles , Yeast, Dried , Humans , Saccharomyces cerevisiae , Fermented Beverages
2.
Mol Brain ; 17(1): 4, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263055

ABSTRACT

The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.


Subject(s)
Multiple Sclerosis , Humans , Cytokines , Neuroinflammatory Diseases , Brain , Central Nervous System
3.
Biology (Basel) ; 12(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37106833

ABSTRACT

Food contamination can be a serious concern for public health because it can be related to the severe spreading of pathogens. This is a main issue, especially in the case of fresh fruits and vegetables; indeed, they have often been associated with gastrointestinal outbreak events, due to contamination with pathogenic bacteria. However, little is known about the physiological adaptation and bacterial response to stresses encountered in the host plant. Thus, this work aimed to investigate the adaptation of a commensal E. coli strain while growing in tomato pericarp. Pre-adapted and non-adapted cells were compared and used to contaminate tomatoes, demonstrating that pre-adaptation boosted cell proliferation. DNA extracted from pre-adapted and non-adapted cells was sequenced, and their methylation profiles were compared. Hence, genes involved in cell adhesion and resistance against toxic compounds were identified as genes involved in adaptation, and their expression was compared in these two experimental conditions. Finally, pre-adapted and non-adapted E. coli were tested for their ability to resist the presence of toxic compounds, demonstrating that adaptation exerted a protective effect. In conclusion, this work provides new information about the physiological adaptation of bacteria colonizing the tomato fruit pericarp.

4.
ACS Nano ; 17(3): 1965-1978, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36692902

ABSTRACT

In neuroinflammation, astrocytes play multifaceted roles that regulate the neuronal environment. Astrocytes sense and respond to pro-inflammatory cytokines (CKs) and, by a repertoire of intracellular Ca2+ signaling, contribute to disease progression. Therapeutic approaches wish to reduce the overactivation in Ca2+ signaling in inflammatory-reactive astrocytes to restore dysregulated cellular changes. Cell-targeting therapeutics might take advantage by the use of nanomaterial-multifunctional platforms such as graphene oxide (GO). GO biomedical applications in the nervous system involve therapeutic delivery and sensing, and GO flakes were shown to enable interfacing of neuronal and glial membrane dynamics. We exploit organotypic spinal cord cultures and optical imaging to explore Ca2+ changes in astrocytes, and we report, when spinal tissue is exposed to CKs, neuroinflammatory-associated modulation of resident glia. We show the efficacy of GO to revert these dynamic changes in astrocytic reactivity to CKs, and we translate this potential in an animal model of immune-mediated neuroinflammatory disease.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuroglia , Inflammation/drug therapy
5.
Front Neurol ; 13: 872396, 2022.
Article in English | MEDLINE | ID: mdl-35693002

ABSTRACT

Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease in which pathogenesis T cells have a major role. Despite the unknown etiology, several risk factors have been described, including a strong association with human leukocyte antigen (HLA) genes. Recent findings showed that HLA class I-G (HLA-G) may be tolerogenic in MS, but further insights are required. To deepen the HLA-G role in MS inflammation, we measured soluble HLA-G (sHLA-G) and cytokines serum level in 27 patients with RRMS at baseline and after 12 and 24 months of natalizumab (NTZ) treatment. Patients were divided into high (sHLA-G>20 ng/ml), medium (sHLA-G between 10 and 20 ng/ml), and low (sHLA-G <10 ng/ml) producers. Results showed a heterogeneous distribution of genotypes among producers, with no significant differences between groups. A significant decrease of sHLA-G was found after 24 months of NTZ in low producers carrying the +3142 C/G genotype. Finally, 83.3% of high and 100% of medium producers were MRI-activity free after 24 months of treatment, compared to 63.5% of low producers. Of note, we did not find any correlation of sHLA-G with peripheral cell counts or cytokines level. These findings suggest that serum sHLA-G level may partly depend on genotype rather than peripheral inflammation, and that may have impacted on MRI activity of patients over treatment.

6.
Front Immunol ; 12: 799380, 2021.
Article in English | MEDLINE | ID: mdl-34925384

ABSTRACT

T-cell receptor (TCR) repertoire diversity is a determining factor for the immune system capability in fighting infections and preventing autoimmunity. During life, the TCR repertoire diversity progressively declines as a physiological aging progress. The investigation of TCR repertoire dynamics over life represents a powerful tool unraveling the impact of immunosenescence in health and disease. Multiple Sclerosis (MS) is a demyelinating, inflammatory, T-cell mediated autoimmune disease of the Central Nervous System in which age is crucial: it is the most widespread neurological disease among young adults and, furthermore, patients age may impact on MS progression and treatments outcome. Crossing knowledge on the TCR repertoire dynamics over MS patients' life is fundamental to investigate disease mechanisms, and the advent of high- throughput sequencing (HTS) has significantly increased our knowledge on the topic. Here we report an overview of current literature about the impact of immunosenescence and age-related TCR dynamics variation in autoimmunity, including MS.


Subject(s)
Aging/immunology , Multiple Sclerosis/immunology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Animals , Autoimmunity , Biological Variation, Individual , Humans , Immunosenescence , Immunosuppression Therapy
7.
Mol Brain ; 14(1): 159, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34696792

ABSTRACT

Neuroinflammation is an escalation factor shared by a vast range of central nervous system (CNS) pathologies, from neurodegenerative diseases to neuropsychiatric disorders. CNS immune status emerges by the integration of the responses of resident and not resident cells, leading to alterations in neural circuits functions. To explore spinal cord astrocyte reactivity to inflammatory threats we focused our study on the effects of local inflammation in a controlled micro-environment, the organotypic spinal slices, developed from the spinal cord of mouse embryos. These organ cultures represent a complex in vitro model where sensory-motor cytoarchitecture, synaptic properties and spinal cord resident cells, are retained in a 3D fashion and we recently exploit these cultures to model two diverse immune conditions in the CNS, involving different inflammatory networks and products. Here, we specifically focus on the tuning of calcium signaling in astrocytes by these diverse types of inflammation and we investigate the mechanisms which modulate intracellular calcium release and its spreading among astrocytes in the inflamed environment. Organotypic spinal cord slices are cultured for two or three weeks in vitro (WIV) and exposed for 6 h to a cocktail of cytokines (CKs), composed by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1 ß) and granulocyte macrophage-colony stimulating factor (GM-CSF), or to lipopolysaccharide (LPS). By live calcium imaging of the ventral horn, we document an increase in active astrocytes and in the occurrence of spontaneous calcium oscillations displayed by these cells when exposed to each inflammatory threat. Through several pharmacological treatments, we demonstrate that intracellular calcium sources and the activation of connexin 43 (Cx43) hemichannels have a pivotal role in increasing calcium intercellular communication in both CKs and LPS conditions, while the Cx43 gap junction communication is apparently reduced by the inflammatory treatments.


Subject(s)
Astrocytes/physiology , Calcium Signaling/physiology , Connexin 43/physiology , Neuroinflammatory Diseases/physiopathology , Spinal Cord/physiopathology , Animals , Anterior Horn Cells/physiology , Cytokines/toxicity , Genetic Vectors/pharmacology , In Vitro Techniques , Intravital Microscopy , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Neuroinflammatory Diseases/chemically induced , Spinal Cord/embryology
8.
EBioMedicine ; 68: 103429, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34127432

ABSTRACT

BACKGROUND: T cells play a key role in the pathogenesis of multiple sclerosis (MS), a chronic, inflammatory, demyelinating disease of the central nervous system (CNS). Although several studies recently investigated the T-cell receptor (TCR) repertoire in cerebrospinal fluid (CSF) of MS patients by high-throughput sequencing (HTS), a deep analysis on repertoire similarities and differences among compartments is still missing. METHODS: We performed comprehensive bioinformatics on high-dimensional TCR Vß sequencing data from published and unpublished MS and healthy donors (HD) studies. We evaluated repertoire polarization, clone distribution, shared CDR3 amino acid sequences (CDR3s-a.a.) across repertoires, clone overlap with public databases, and TCR similarity architecture. FINDINGS: CSF repertoires showed a significantly higher public clones percentage and sequence similarity compared to peripheral blood (PB). On the other hand, we failed to reject the null hypothesis that the repertoire polarization is the same between CSF and PB. One Primary-Progressive MS (PPMS) CSF repertoire differed from the others in terms of TCR similarity architecture. Cluster analysis splits MS from HD. INTERPRETATION: In MS patients, the presence of a physiological barrier, the blood-brain barrier, does not impact clone prevalence and distribution, but impacts public clones, indicating CSF as a more private site. We reported a high Vß sequence similarity in the CSF-TCR architecture in one PPMS. If confirmed it may be an interesting insight into MS progressive inflammatory mechanisms. The clustering of MS repertoires from HD suggests that disease shapes the TCR Vß clonal profile. FUNDING: This study was partly financially supported by the Italian Multiple Sclerosis Foundation (FISM), that contributed to Ballerini-DB data collection (grant #2015 R02).


Subject(s)
Cerebrospinal Fluid/immunology , Computational Biology/methods , Multiple Sclerosis/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Adult , Aged , Blood-Brain Barrier , Case-Control Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Italy , Male , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/genetics , Receptors, Antigen, T-Cell/blood , Receptors, Antigen, T-Cell/genetics , Sequence Analysis, DNA , Young Adult
9.
J Neuroimmune Pharmacol ; 16(2): 376-389, 2021 06.
Article in English | MEDLINE | ID: mdl-32514635

ABSTRACT

We developed a nanotechnology based-cell mediated drug delivery system by loading myelin antigen-specific T cells with nanoparticles bound to anti-CD20 monoclonal antibody. Anti-CD20 antibody is a current treatment (ocrelizumab) for multiple sclerosis (MS), a chronic, inflammatory and autoimmune disease of the central nervous system (CNS). CD20-depletion has been associated with efficacy in active relapsing and progressive MS, but may not efficiently target inflammatory cells compartmentalized in the CNS. In our work, the intravenous transfer of T cells containing nanoparticle-anti-CD20 complex in mice causes B cell depletion in the spleen and in the brain, whereas the injection of anti-CD20 alone depletes B cells only in the spleen. Testing this system in Experimental Autoimmune Encephalomyelitis (EAE), animal model of MS, we found that spinal cord B cell depletion ameliorates the disease course and pathology. Graphical Abstract.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/administration & dosage , Antigens, CD20 , B-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental/immunology , Nanoparticle Drug Delivery System , T-Lymphocytes/transplantation , Animals , Female , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/immunology , Spinal Cord/drug effects , Spinal Cord/immunology
11.
J Mol Endocrinol ; 65(3): 109-124, 2020 10.
Article in English | MEDLINE | ID: mdl-32755990

ABSTRACT

Chronic inflammation is involved in the genitourinary syndrome of menopause (GSM) and beneficial effects of androgens in the vagina have been described. We investigated the potential involvement of human vagina smooth muscle cells (hvSMCs) in the inflammatory response and the immunomodulatory effect of androgen receptor (AR) agonist dihydrotestosterone (DHT). HvSMCs isolated from menopausal women were evaluated for sex steroids receptors and toll-like receptors mRNA expression, and left untreated or treated in vitro with lipopolysaccharide (LPS) or IFNγ, in the presence or absence of DHT. We evaluated mRNA expression (by RT-PCR) and secretion in cell culture supernatants (by a bead-based immunoassay) of pro-inflammatory markers. Nuclear translocation of NF-κB (by immunofluorescence) and cell surface HLA-DR expression (by flow cytometry) were also evaluated. Similar experiments were repeated in rat vSMCs (rvSMCs). In hvSMCs and rvSMCs, AR was highly expressed. DHT pre-treatment inhibited LPS-induced mRNA expression of several pro-inflammatory mediators (i.e. COX2, IL-6, IL-12A and IFNγ), effect significantly blunted by AR antagonist bicalutamide. DHT significantly counteracted the secretion of IL-1RA, IL-2, IL-5, IL-15, FGF, VEGF and TNFα. LPS-induced NF-κB nuclear translocation was significantly inhibited by DHT, an effect counteracted by bicalutamide. DHT pre-treatment significantly decreased IFNγ-induced expression of HLA-DR, mRNA expression of iNOS, COX2 and MCP1, and secretion of IL-1, IL-2, IL-5, IL-6, MCP1 and GCSF. Similar effects were observed in rvSMCs. The activation of AR suppresses the inflammatory response in hvSMCs, reducing their potential to be involved in the initiation and maintaining of inflammation, thus representing a therapeutic strategy in conditions, such as the GSM.


Subject(s)
Androgens/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/prevention & control , Vagina/drug effects , Animals , Cells, Cultured , Dihydrotestosterone/pharmacology , Female , Gene Expression/drug effects , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Vagina/metabolism , Vagina/pathology
12.
Biomed Pharmacother ; 129: 110368, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559625

ABSTRACT

Fatty acid ethanolamides acting on proliferator-activated receptor (PPAR)-α are among the endogenous lipid molecules that attenuate inflammatory processes and pain sensitivity. Whereas these properties are well-known for palmitoylethanolamide (PEA), the efficacy of oleoylethanolamide (OEA, first described as a satiety hormone synthesized in the jejunum) has been overlooked. In this study, we aimed to evaluate the effect of OEA administration in a mouse model of colitis. C57BL/6J mice were exposed to 2.5% dextran sodium sulphate (DSS) in drinking water for 5 days. Daily i.p. administration of 10 mg/kg OEA started 3 days before DSS and lasted for 12 days. The DSS-untreated control group received only ultrapure water. DSS mice treated with OEA had a significant improvement of disease score. OEA restored mRNA transcription of PPAR-α, of tight junctions and protective factors of colon integrity disrupted by DSS. The improvement correlated with significant decrease of colonic and systemic levels of pro-inflammatory cytokines compared to the DSS group. OEA antiinflammatory effects were mediated by the selective targeting of the TLR4 axis causing a downstream inhibition of nuclear factor kappa B (NF-κB)- MyD88-dependent and NLRP3 inflammation pathways. OEA treatment also inhibited DSS-induced increase of inflammatory cytokines levels in the mesenteric lymph nodes. CONCLUSIONS AND IMPLICATIONS: These results underscore the validity of OEA as a potent protective and anti-inflammatory agent in ulcerative colitis that may be exploited to broaden the pharmacological strategies against inflammatory bowel disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/prevention & control , Colon/drug effects , Dextran Sulfate , Endocannabinoids/pharmacology , Immunologic Factors/pharmacology , Oleic Acids/pharmacology , Animals , Colitis/chemically induced , Colitis/immunology , Colitis/metabolism , Colon/immunology , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Permeability , Signal Transduction , Toll-Like Receptor 4/metabolism
13.
Front Immunol ; 11: 559, 2020.
Article in English | MEDLINE | ID: mdl-32328061

ABSTRACT

Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the post-treatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naïve and memory CD4+ and CD8+) across 15 RRMS patients before and after two years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRß sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRß repertoire dynamics with respect to clonal expansion, clonal diversity and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multi-dimensional computational immunology to a TCRß dataset of treated MS patients, we show that qualitative changes of TCRß repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis and treatment regimes. Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the posttreatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naive and memory CD4+ and CD8+) across 15 RRMS patients before and after 2 years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRß sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRß repertoire dynamics with respect to clonal expansion, clonal diversity, and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multidimensional computational immunology to a TCRß dataset of treated MS patients, we show that qualitative changes of TCRß repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis, and treatment regimens.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunosuppression Therapy/methods , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/therapy , Receptors, Antigen, T-Cell, alpha-beta/immunology , Adult , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Immunologic Factors/therapeutic use , Male , Middle Aged , Natalizumab/therapeutic use , Receptors, Antigen, T-Cell, alpha-beta/drug effects , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...