Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069369

ABSTRACT

Mast cells can recognize foot-and-mouth disease virus-like particles (FMDV-VLPs) via mannose receptors (MRs) to produce differentially expressed cytokines. The regulatory role of chromatin accessibility in this process is unclear. Bone marrow-derived mast cells (BMMCs) were cultured, and an assay of transposase-accessible chromatin sequencing (ATAC-seq) was applied to demonstrate the regulation of chromatin accessibility in response to the BMMCs' recognition of FMDV-VLPs. A pathway enrichment analysis showed that peaks associated with the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), and other signaling pathways, especially the NF-κB pathway, were involved in the BMMCs' recognition of VLPs. Moreover, transcription factors including SP1, NRF1, AP1, GATA3, microphthalmia-associated transcription factor (MITF), and NF-κB-p65 may bind to the motifs with altered chromatin accessibility to regulate gene transcription. Furthermore, the expression of NF-κB, interleukin (IL)-9, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the BMMCs of the VLP group increased compared with that of the BMMCs in the control group, whereas the expression of IL-10 did not differ significantly between groups. After inhibiting the MRs, the expression of NF-κB, IL-9, TNF-α, and IFN-γ decreased significantly, whereas the expression of IL-10 increased. The expression of MAPK and IL-6 showed no significant change after MR inhibition. This study demonstrated that MRs expressed on BMMCs can affect the NF-κB pathway by changing chromatin accessibility to regulate the transcription of specific cytokines, ultimately leading to the differential expression of cytokines. These data provide a theoretical basis and new ideas for the development of a novel vaccine for FMD.


Subject(s)
Foot-and-Mouth Disease Virus , NF-kappa B , Animals , NF-kappa B/metabolism , Interleukin-10 , Foot-and-Mouth Disease Virus/genetics , Phosphatidylinositol 3-Kinases/metabolism , Chromatin Immunoprecipitation Sequencing , Cytokines/metabolism , Mitogen-Activated Protein Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Chromatin/genetics
2.
Vet Immunol Immunopathol ; 264: 110662, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37862872

ABSTRACT

Chitosan nanoparticulate vaccines have attracted considerable attention to potentiate immune responses. A chitosan-TNF-α-VLPs nanoparticle vaccine against foot-and-mouth disease virus (FMDV) prepared though inotropic gelation method and whether this nanoparticulate vaccine can activate mast cells and enhance immune responses induced by FMDV virus-like particles (VLPs) in mice was investigated. The nanoparticle was approximately spherical, and its size was approximately 200-300 nm. Following immunization via subcutaneous injection, the chitosan-TNF-α-VLPs nanoparticles could induce higher levels of FMDV-specific antibodies and stimulation index value than VLPs only (P < 0.01) and had similar levels to commercial vaccine group and VLPs+adjuvant group (P > 0.05). No significant differences were observed in the concentrations of IL-4, IFN-γ and IL-10 among the chitosan-TNF-α-VLPs group, VLPs+adjuvant group and commercial vaccine group (P > 0.05). Of note, the chitosan-TNF-α-VLPs nanoparticles can effectively activate mast cells in lymph nodes. These results indicated that the chitosan-TNF-α-VLPs nanoparticles can enhance both humoral and cell-mediated immunity, and both Th1 and Th2 responses, even activate mast cells, demonstrating that chitosan-TNF-α nanoparticles are potential as a vaccine adjuvant to enhance immune responses induced by FMDV-VLPs.


Subject(s)
Chitosan , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Vaccines, Virus-Like Particle , Vaccines , Viral Vaccines , Animals , Mice , Tumor Necrosis Factor-alpha , Chitosan/pharmacology , Mast Cells , Foot-and-Mouth Disease/prevention & control , Antibodies, Viral , Immunity, Cellular , Adjuvants, Immunologic/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...