Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Biomed Res Int ; 2022: 5203401, 2022.
Article En | MEDLINE | ID: mdl-35832849

Arrhythmias are anomalies in the heartbeat rhythm that occur occasionally in people's lives. These arrhythmias can lead to potentially deadly consequences, putting your life in jeopardy. As a result, arrhythmia identification and classification are an important aspect of cardiac diagnostics. An electrocardiogram (ECG), a recording collecting the heart's pumping activity, is regarded the guideline for catching these abnormal episodes. Nevertheless, because the ECG contains so much data, extracting the crucial data from imagery evaluation becomes extremely difficult. As a result, it is vital to create an effective system for analyzing ECG's massive amount of data. The ECG image from ECG signal is processed by some image processing techniques. To optimize the identification and categorization process, this research presents a hybrid deep learning-based technique. This paper contributes in two ways. Automating noise reduction and extraction of features, 1D ECG data are first converted into 2D pictures. Then, based on experimental evidence, a hybrid model called CNNLSTM is presented, which combines CNN and LSTM models. We conducted a comprehensive research using the broadly used MIT_BIH arrhythmia dataset to assess the efficacy of the proposed CNN-LSTM technique. The results reveal that the proposed method has a 99.10 percent accuracy rate. Furthermore, the proposed model has an average sensitivity of 98.35 percent and a specificity of 98.38 percent. These outcomes are superior to those produced using other procedures, and they will significantly reduce the amount of involvement necessary by physicians.


Deep Learning , Algorithms , Arrhythmias, Cardiac/diagnostic imaging , Databases, Factual , Diagnostic Imaging , Electrocardiography/methods , Heart Rate , Humans , Neural Networks, Computer , Signal Processing, Computer-Assisted
...