Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Zoo Biol ; 42(5): 668-674, 2023.
Article in English | MEDLINE | ID: mdl-37151175

ABSTRACT

Across zoo's accredited by the Association of Zoos and Aquariums (AZA), species are typically managed as a single population to retain 90% of the founding members' gene diversity. Often, little is known about the specific geographic origins of the founders or how representative the ex situ population's genetic diversity is of the wild population. This study uses mitochondrial DNA (mtDNA) sequencing to investigate haplotype diversity and geographic female founder origin of the AZA-managed Angolan colobus (Colobus angolensis) monkey population. We obtained fecal samples from individuals closely related to founder animals at five zoos and found four haplotypes among 23 individuals. Analyzed together with wild C. angolensis haplotypes, we found two haplotypes identical to those found in Tanzanian populations: one haplotype, possessed by 13 individuals (descended from three founders), matched an East Usambara Mountains haplotype, while the other, possessed by seven individuals (from four founders), matched a haplotype found in both the South Pare Mountains and Rufiji River. Two haplotypes were not detected in wild populations but were closely related to haplotypes found in the Rufiji River (one individual descended from one founder) and Shimoni, Kenya (two individuals descended from one founder) populations, suggesting nearby origins. Thus, the AZA-managed population of Angolan colobus likely originated from several localities, but all have mtDNA lineages associated with the subspecies C. a. palliatus, a Vulnerable subspecies. Examining founders' mtDNA haplotypes may be a useful addition to the zoo population management toolkit to help improve breeding recommendations by identifying individuals with rare haplotypes and revealing likely kinship among founders.


Subject(s)
Animals, Zoo , Colobus , Humans , Female , Animals , Colobus/genetics , Animals, Zoo/genetics , DNA, Mitochondrial/genetics , Haplotypes , Genetic Variation
2.
Nat Commun ; 14(1): 1033, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823144

ABSTRACT

The malaria parasite Plasmodium falciparum causes substantial human mortality, primarily in equatorial Africa. Enriched in affected African populations, the B*53 variant of HLA-B, a cell surface protein that presents peptide antigens to cytotoxic lymphocytes, confers protection against severe malaria. Gorilla, chimpanzee, and bonobo are humans' closest living relatives. These African apes have HLA-B orthologs and are infected by parasites in the same subgenus (Laverania) as P. falciparum, but the consequences of these infections are unclear. Laverania parasites infect bonobos (Pan paniscus) at only one (TL2) of many sites sampled across their range. TL2 spans the Lomami River and has genetically divergent subpopulations of bonobos on each side. Papa-B, the bonobo ortholog of HLA-B, includes variants having a B*53-like (B07) peptide-binding supertype profile. Here we show that B07 Papa-B occur at high frequency in TL2 bonobos and that malaria appears to have independently selected for different B07 alleles in the two subpopulations.


Subject(s)
Histocompatibility Antigens Class I , Malaria, Falciparum , Pan paniscus , Plasmodium , Animals , Malaria, Falciparum/genetics , Pan paniscus/genetics , Pan paniscus/parasitology , Peptides , Phylogeny , Histocompatibility Antigens Class I/genetics
3.
Am J Primatol ; 84(7): e23384, 2022 07.
Article in English | MEDLINE | ID: mdl-35389522

ABSTRACT

Whether the Colobus angolensis that reside in the fragmented forests in eastern Kenya and Tanzania represent one subspecies or two has been debated for 50 years. Morphological and more recent genetic and ecological studies suggest that these populations represent two subspecies, C. a. palliatus and C. a. sharpei. However, their distribution of mitochondrial variation remains unresolved since the genetic study only characterized four populations at the range ends. Therefore, we characterized five populations in the area of the hypothesized subspecies divide. We identified eight new haplotypes which, combined with those previously identified, provided 26 haplotypes from nine populations for analysis. Haplotypes found south of the Rufiji River cluster together but separately from northern haplotypes. The largest sequence differences within cytochrome b occur between population pairs representing opposite sides of the river; their mean difference (1.5%) is more than that of other primate subspecies. Analysis of molecular variance attributes most of the variation to that north versus south of the river. These results support the previous subspecies distinction between C. a. palliatus (northern) and C. a. sharpei (southern), divided by the Rufiji River. The estimated time of the most recent common ancestor of all haplotypes indicates that the subspecies have been isolated from each other for approximately 550,000 years. The common ancestor of northern and southern haplogroups was 370,000 and 290,000 years ago, respectively. Nevertheless, the correlation between genetic and geographic distances suggests that isolation-by-distance contributed to population structuring. Significant variation among populations, with only three haplotypes shared between populations, also indicates that an extended period of isolation drove population distinctiveness. Considering these results, we evaluate hypotheses about the founding and differentiation of these subspecies during Pleistocene climatic fluctuations and propose a novel, more direct migration route from Central Africa to their current range navigating Lake Tanganyika, the central Tanzanian corridor, and the Rufiji River.


Subject(s)
Colobus , Forests , Animals , Colobus/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Haplorhini , Haplotypes , Kenya , Phylogeny , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...