Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
Clin Infect Dis ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166857

ABSTRACT

BACKGROUND: Influenza causes substantial morbidity, particularly among older individuals. Updated data on the effectiveness of currently licensed vaccines in this population are needed. METHODS: At Kaiser Permanente Southern California, we conducted a retrospective cohort study to evaluate comparative vaccine effectiveness (cVE) of high-dose (HD), adjuvanted, and standard-dose (SD) cell-based influenza vaccines, relative to the SD egg-based vaccine. We included adults aged ≥65 years who received an influenza vaccine between 1 August 2022 and 31 December 2022, with follow-up up to 20 May 2023. Primary outcomes were: (1) influenza-related medical encounters and (2) polymerase chain reaction (PCR)-confirmed influenza-related hospitalization. Adjusted hazard ratios (aHR) were estimated by Cox proportional hazards regression, adjusting for confounders using inverse probability of treatment weighting (IPTW). cVE (%) was calculated as (1-aHR) × 100 when aHR ≤1, and ([1/aHR]-1) × 100 when aHR >1. RESULTS: Our study population (n = 495 119) was 54.9% female, 46.3% non-Hispanic White, with a median age of 73 years (interquartile range [IQR] 69-79). Characteristics of all groups were well balanced after IPTW. Adjusted cVEs against influenza-related medical encounters in the HD, adjuvanted, and SD cell-based vaccine groups were 9.1% (95% confidence interval [CI]: .9, 16.7), 16.9% (95% CI: 1.7, 29.8), and -6.3 (95% CI: -18.3, 6.9), respectively. Adjusted cVEs against PCR-confirmed hospitalization in the HD, adjuvanted, and SD cell-based groups were 25.1% (95% CI: .2, 43.8), 61.6% (95% CI: 18.1, 82.0), and 26.4% (95% CI: -18.3, 55.7), respectively. CONCLUSIONS: Compared to the SD egg-based vaccine, HD and adjuvanted vaccines conferred additional protection against influenza-related outcomes in the 2022-2023 season in adults ≥65 years. Our results provide real-world evidence of the comparative effectiveness of currently licensed vaccines.

2.
Clin Infect Dis ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158584

ABSTRACT

BACKGROUND: A 2-dose mRNA-1273 primary series in children aged 6 months-5 years (25-µg) and 6-11 years (50-µg) had an acceptable safety profile and was immunogenic in the phase 2/3 KidCOVE study. We present data from KidCOVE participants who received an mRNA-1273 booster dose. METHODS: An mRNA-1273 booster dose (10-µg for children aged 6 months-5 years; 25-µg for children aged 6-11 years; age groups based on participant age at enrollment) was administered ≥6 months after primary series completion. The primary safety objective was the safety and reactogenicity of an mRNA-1273 booster dose. The primary immunogenicity objective was to infer efficacy of an mRNA-1273 booster dose by establishing noninferiority of neutralizing antibody (nAb) responses after a booster in children compared with nAb responses observed after the mRNA-1273 primary series in young adults (18-25 years) from the pivotal efficacy study. Data were collected from March 2022 to June 2023. RESULTS: Overall, 153 (6 months-5 years) and 2519 (6-11 years) participants received an mRNA-1273 booster dose (median age at receipt of booster: 2 and 10 years, respectively). The booster dose safety profile was generally consistent with that of the primary series in children; no new safety concerns were identified. An mRNA-1273 booster dose elicited robust nAb responses against ancestral SARS-CoV-2 among children and met prespecified noninferiority success criteria when compared with responses observed after the primary series in young adults. CONCLUSIONS: Safety and immunogenicity data support administration of a mRNA-1273 booster dose in children aged 6 months to 11 years. CLINICAL TRIALS REGISTRATION: NCT04796896.

3.
Nat Commun ; 15(1): 7469, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209823

ABSTRACT

Primary vaccination with mRNA-1273 (100-µg) was safe and efficacious at preventing coronavirus disease 2019 (COVID-19) in the previously reported, blinded Part A of the phase 3 Coronavirus Efficacy (COVE; NCT04470427) trial in adults (≥18 years) across 99 U.S. sites. The open-label (Parts B and C) primary objectives were evaluation of long-term safety and effectiveness of primary vaccination plus a 50-µg booster dose; immunogenicity was a secondary objective. Of 29,035 open-label participants, 19,609 received boosters (mRNA-1273 [n = 9647]; placebo-mRNA-1273 [n = 9952]; placebo [n = 10] groups). Booster safety was consistent with that reported for primary vaccination. Incidences of COVID-19 and severe COVID-19 were higher during the Omicron BA.1 than Delta variant waves and boosting versus non-boosting was associated with a significant, 47.0% (95% CI : 39.0-53.9%) reduction of Omicron BA.1 incidence (24.6 [23.4 - 25.8] vs 46.4 [40.6 - 52.7]/1000 person-months). In an exploratory Cox regression model adjusted for time-varying covariates, a longer median interval between primary vaccination and boosting (mRNA-1273 [13 months] vs placebo-mRNA-1273 [8 months]) was associated with significantly lower, COVID-19 risk (24.0% [16.0% - 32.0%]) during Omicron BA.1 predominance. Boosting elicited greater immune responses against SARS-CoV-2 than primary vaccination, irrespective of prior SARS-CoV-2 infection. Primary vaccination and boosting with mRNA-1273 demonstrated acceptable safety, effectiveness and immunogenicity against COVID-19, including emergent variants.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273/immunology , COVID-19/prevention & control , COVID-19/immunology , Adult , Male , Female , SARS-CoV-2/immunology , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Vaccine Efficacy , Antibodies, Viral/immunology , Antibodies, Viral/blood , Immunogenicity, Vaccine , Aged , Young Adult , Vaccination , Adolescent
4.
J Infect Dis ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995029

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory illness (ARI) in older adults. Optimizing diagnosis could improve understanding of RSV burden. METHODS: We enrolled adults ≥50 years of age hospitalized with ARI and adults of any age hospitalized with congestive heart failure or chronic obstructive pulmonary disease exacerbations at two hospitals during two respiratory seasons (2018-2020). We collected nasopharyngeal (NP) and oropharyngeal (OP) swabs (n=1558), acute and convalescent sera (n=568), and expectorated sputum (n=153) from participants, and recorded standard-of-care (SOC) NP results (n=805). We measured RSV antibodies by two immunoassays and performed BioFire testing on respiratory specimens. RESULTS: Of 1,558 eligible participants, 92 (5.9%) tested positive for RSV by any diagnostic method. Combined NP/OP PCR yielded 58 positives, while separate NP and OP testing identified 11 additional positives (18.9% increase). Compared to Study NP/OP PCR alone, the addition of paired serology increased RSV detection by 42.9% (28 vs 40) among those with both specimen types, while the addition of SOC swab RT-PCR results increased RSV detection by 25.9% (47 vs 59). CONCLUSIONS: The addition of paired serology testing, SOC swab results, and separate testing of NP and OP swabs improved RSV diagnostic yield in hospitalized adults.

5.
medRxiv ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39040211

ABSTRACT

Background: Severe COVID and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with SARS-CoV-2-specific IgG Fc afucosylation, which induces pro-inflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokine/chemokine levels. Methods: We analyzed longitudinal (n=146) and cross-sectional (n=49) serum/plasma samples from adult and pediatric COVID patients, MIS-C patients, adult vaccinees, and adult and pediatric healthy controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis (CE) and measured levels of ten inflammatory cytokines/chemokines by multiplexed ELISA. Results: Spike IgG were more afucosylated than bulk IgG during acute adult COVID and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG were more galactosylated and sialylated and less bisected than bulk IgG during adult COVID, with similar trends observed during pediatric COVID/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with pro-inflammatory cytokines in adult COVID and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions: We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID and MIS-C immunopathology.

6.
Vaccines (Basel) ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932386

ABSTRACT

It is important to understand real-world BNT162b2 COVID-19 vaccine effectiveness (VE), especially among racial and ethnic minority groups. We performed a test-negative case-control study to measure BNT162b2 COVID-19 VE in the prevention of COVID-19-associated acute respiratory illness (ARI) hospitalizations at two Atlanta hospitals from May 2021-January 2023 and adjusted for potential confounders by multivariate analysis. Among 5139 eligible adults with ARI, 2763 (53.8%) were enrolled, and 1571 (64.5%) were included in the BNT162b2 analysis. The median age was 58 years (IQR, 44-68), 889 (56.6%) were female, 1034 (65.8%) were African American, 359 (22.9%) were White, 56 (3.6%) were Hispanic ethnicity, 645 (41.1%) were SARS-CoV-2-positive, 412 (26.2%) were vaccinated with a primary series, and 273 (17.4%) had received ≥1 booster of BNT162b2. The overall adjusted VE of the BNT162b2 primary series was 58.5% (95% CI 46.0, 68.1), while the adjusted VE of ≥1 booster was 78.9% (95% CI 70.0, 85.1). The adjusted overall VE of primary series for African American/Black individuals was 64.0% (95% CI 49.9, 74.1) and 82.7% (95% CI 71.9, 89.4) in those who received ≥1 booster. When analysis was limited to the period of Omicron predominance, overall VE of the primary series decreased with widened confidence intervals (24.5%, 95% CI -4.5, 45.4%), while VE of ≥1 booster was maintained at 60.9% (95% CI 42.0, 73.6). BNT162b2 primary series and booster vaccination provided protection against COVID-19-associated ARI hospitalization among a predominantly African American population.

7.
Hum Vaccin Immunother ; 20(1): 2335052, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38575149

ABSTRACT

Emerging SARS-CoV-2 sublineages continue to cause serious COVID-19 disease, but most individuals have not received any COVID-19 vaccine for >1 year. Assessment of long-term effectiveness of bivalent COVID-19 vaccines against circulating sublineages is important to inform the potential need for vaccination with updated vaccines. In this test-negative study at Kaiser Permanente Southern California, sequencing-confirmed BA.4/BA.5- or XBB-related SARS-CoV-2-positive cases (September 1, 2022 to June 30, 2023), were matched 1:3 to SARS-CoV-2-negative controls. We assessed mRNA-1273 bivalent relative (rVE) and absolute vaccine effectiveness (VE) compared to ≥2 or 0 doses of original monovalent vaccine, respectively. The rVE analysis included 20,966 cases and 62,898 controls. rVE (95%CI) against BA.4/BA.5 at 14-60 days and 121-180 days was 52.7% (46.9-57.8%) and 35.5% (-2.8-59.5%) for infection, and 59.3% (49.7-67.0%) and 33.2% (-28.2-68.0%) for Emergency Department/Urgent Care (ED/UC) encounters. For BA.4/BA.5-related hospitalizations, rVE was 71.3% (44.9-85.1%) and 52.0% (-1.2-77.3%) at 14-60 days and 61-120 days, respectively. rVE against XBB at 14-60 days and 121-180 days was 48.8% (33.4-60.7%) and -3.9% (-18.1-11.3%) for infection, 70.7% (52.4-82.0%) and 15.7% (-6.0-33.2%) for ED/UC encounters, and 87.9% (43.8-97.4%) and 57.1% (17.0-77.8%) for hospitalization. VE and subgroup analyses (age, immunocompromised status, previous SARS-CoV-2 infection) results were similar to rVE analyses. rVE of mRNA-1273 bivalent vaccine against BA.4/BA.5 and XBB infections, ED/UC encounters, and hospitalizations waned over time. Periodic revaccination with vaccines targeting emerging variants may be important in reducing COVID-19 morbidity and mortality.


Subject(s)
COVID-19 , mRNA Vaccines , Humans , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccines, Combined
8.
Clin Infect Dis ; 78(6): 1757-1768, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38537255

ABSTRACT

INTRODUCTION: A surge of human influenza A(H7N9) cases began in 2016 in China from an antigenically distinct lineage. Data are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs. METHODS: Healthy adults (n = 180), ages 19-50 years, were enrolled into this partially blinded, randomized, multicenter phase 2 clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime-boost strategies with 2 different boost intervals (21 vs 120 days) and 2 dosages (3.75 or 15 µg of hemagglutinin) administered with or without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition and neutralizing antibody titers were assessed. RESULTS: Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a longer interval between prime and boost. The highest hemagglutination inhibition geometric mean titer (95% confidence interval) observed against the 2017 A(H7N9) strain was 133.4 (83.6-212.6) among participants who received homologous, adjuvanted 3.75 µg + AS03/2017 doses with delayed boost interval. CONCLUSIONS: Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic preparedness. Clinical Trials Registration. NCT03589807.


Subject(s)
Antibodies, Viral , Immunization, Secondary , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Inactivated , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Adult , Male , Female , Middle Aged , Influenza A Virus, H7N9 Subtype/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Antibodies, Viral/blood , Influenza, Human/prevention & control , Influenza, Human/immunology , Young Adult , Immunization Schedule , Hemagglutination Inhibition Tests , United States , Immunogenicity, Vaccine , Antibodies, Neutralizing/blood , Polysorbates/administration & dosage , Polysorbates/adverse effects , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/adverse effects , Squalene/administration & dosage , Squalene/adverse effects , Squalene/immunology , Healthy Volunteers , Drug Combinations , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects
9.
Open Forum Infect Dis ; 11(3): ofae042, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524226

ABSTRACT

Background: Respiratory syncytial virus (RSV) can cause severe disease among infants and older adults. Less is known about RSV among pregnant women. Methods: To analyze hospitalizations with laboratory-confirmed RSV among women aged 18 to 49 years, we used data from the RSV Hospitalization Surveillance Network (RSV-NET), a multistate population-based surveillance system. Specifically, we compared characteristics and outcomes among (1) pregnant and nonpregnant women during the pre-COVID-19 pandemic period (2014-2018), (2) pregnant women with respiratory symptoms during the prepandemic and pandemic periods (2021-2023), and (3) pregnant women with and without respiratory symptoms in the pandemic period. Using multivariable logistic regression, we examined whether pregnancy was a risk factor for severe outcomes (intensive care unit admission or in-hospital death) among women aged 18 to 49 years who were hospitalized with RSV prepandemic. Results: Prepandemic, 387 women aged 18 to 49 years were hospitalized with RSV. Of those, 350 (90.4%) had respiratory symptoms, among whom 33 (9.4%) were pregnant. Five (15.2%) pregnant women and 74 (23.3%) nonpregnant women were admitted to the intensive care unit; no pregnant women and 5 (1.6%) nonpregnant women died. Among 279 hospitalized pregnant women, 41 were identified prepandemic and 238 during the pandemic: 80.5% and 35.3% had respiratory symptoms, respectively (P < .001). Pregnant women were more likely to deliver during their RSV-associated hospitalization during the pandemic vs the prepandemic period (73.1% vs 43.9%, P < .001). Conclusions: Few pregnant women had severe RSV disease, and pregnancy was not a risk factor for a severe outcome. More asymptomatic pregnant women were identified during the pandemic, likely due to changes in testing practices for RSV.

10.
J Infect Dis ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536442

ABSTRACT

INTRODUCTION: Establishing the safety and immunogenicity of a hepatitis E virus vaccine in multiple populations could facilitate broader access and prevent maternal and infant mortality. METHODS: We conducted a phase 1, randomized, double-blinded, placebo-controlled (4:1 vaccine: placebo) trial of 30 µg HEV-239 (Hecolin®, Xiamen Innovax Biotech Company Limited, China) administered intramuscularly in healthy US adults aged 18-45 years. Participants were vaccinated on days 1, 29, and 180. Participants reported solicited local and systemic reactions for 7 days following vaccination and were followed through 12 months after enrollment for safety and immunogenicity (IgG, IgM). RESULTS: Solicited local and systemic reactions between treatment and placebo group were similar and overall mild. No participants experienced serious adverse events related to HEV-239. All participants receiving HEV-239 seroconverted at one month following the first dose and remained seropositive throughout the study. HEV-239 elicited a robust hepatitis E IgG response that peaked one month following the second dose (Geometric Mean Concentration (GMC) 6.16; 95% CI 4.40-8.63), was boosted with the third dose (GMC 11.50; 95% CI 7.90-16.75) and persisted through 6 months. CONCLUSIONS: HEV-239 is safe and elicits a durable immune response through at least 6 months after the third dose in healthy US adults. CLINICAL TRIALS REGISTRATION: NCT03827395. Safety Study of Hepatitis E Vaccine (HEV239) - Full Text View - ClinicalTrials.gov.

11.
Open Forum Infect Dis ; 11(1): ofad702, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269052

ABSTRACT

Severe outcomes were common among adults hospitalized for COVID-19 or influenza, while the percentage of COVID-19 hospitalizations involving critical care decreased from October 2021 to September 2022. During the Omicron BA.5 period, intensive care unit admission frequency was similar for COVID-19 and influenza, although patients with COVID-19 had a higher frequency of in-hospital death.

12.
J Infect Dis ; 229(1): 95-107, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37477875

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in infants. This phase 1/2, observer-blind, randomized, controlled study assessed the safety and immunogenicity of an investigational chimpanzee-derived adenoviral vector RSV vaccine (ChAd155-RSV, expressing RSV F, N, and M2-1) in infants. METHODS: Healthy 6- to 7-month-olds were 1:1:1-randomized to receive 1 low ChAd155-RSV dose (1.5 × 1010 viral particles) followed by placebo (RSV_1D); 2 high ChAd155-RSV doses (5 × 1010 viral particles) (RSV_2D); or active comparator vaccines/placebo (comparator) on days 1 and 31. Follow-up lasted approximately 2 years. RESULTS: Two hundred one infants were vaccinated (RSV_1D: 65; RSV_2D: 71; comparator: 65); 159 were RSV-seronaive at baseline. Most solicited and unsolicited adverse events after ChAd155-RSV occurred at similar or lower rates than after active comparators. In infants who developed RSV infection, there was no evidence of vaccine-associated enhanced respiratory disease (VAERD). RSV-A neutralizing titers and RSV F-binding antibody concentrations were higher post-ChAd155-RSV than postcomparator at days 31, 61, and end of RSV season 1 (mean follow-up, 7 months). High-dose ChAd155-RSV induced stronger responses than low-dose, with further increases post-dose 2. CONCLUSIONS: ChAd155-RSV administered to 6- to 7-month-olds had a reactogenicity/safety profile like other childhood vaccines, showed no evidence of VAERD, and induced a humoral immune response. Clinical Trials Registration. NCT03636906.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Infant , Antibodies, Neutralizing , Antibodies, Viral , Genetic Vectors , Immunogenicity, Vaccine , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/genetics
13.
Clin Infect Dis ; 78(4): 1065-1072, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37946601

ABSTRACT

BACKGROUND: Data are limited on influenza vaccine effectiveness (VE) in the prevention of influenza-related hospitalizations in older adults and those with underlying high-risk comorbidities. METHODS: We conducted a prospective, test-negative, case-control study at 2 US hospitals from October 2018-March 2020 among adults aged ≥50 years hospitalized with acute respiratory illnesses (ARIs) and adults ≥18 years admitted with congestive heart failure (CHF) or chronic obstructive pulmonary disease (COPD) exacerbations. Adults were eligible if they resided in 1 of 8 counties in metropolitan Atlanta, Georgia. Nasopharyngeal and oropharyngeal swabs were tested using BioFire FilmArray (bioMérieux, Inc.) respiratory panel, and standard-of-care molecular results were included when available. Influenza vaccination history was determined from the Georgia vaccine registry and medical records. We used multivariable logistic regression to control for potential confounders and to determine 95% confidence intervals (CIs). RESULTS: Among 3090 eligible adults, 1562 (50.6%) were enrolled. Of the 1515 with influenza vaccination history available, 701 (46.2%) had received vaccination during that season. Influenza was identified in 37 (5.3%) vaccinated versus 78 (9.6%) unvaccinated participants. After adjustment for age, race/ethnicity, immunosuppression, month, and season, pooled VE for any influenza-related hospitalization in the eligible study population was 63.1% (95% CI, 43.8-75.8%). Adjusted VE against influenza-related hospitalization for ARI in adults ≥50 years was 55.9% (29.9-72.3%) and adjusted VE against influenza-related CHF/COPD exacerbation in adults ≥18 years was 80.3% (36.3-93.9%). CONCLUSIONS: Influenza vaccination was effective in preventing influenza-related hospitalizations in adults aged ≥50 years and those with CHF/COPD exacerbations during the 2018-2020 seasons.


Subject(s)
Heart Failure , Influenza Vaccines , Influenza, Human , Pulmonary Disease, Chronic Obstructive , Humans , Aged , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Case-Control Studies , Prospective Studies , Pandemics , Vaccine Efficacy , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Heart Failure/epidemiology , Vaccination , Hospitalization , Seasons
14.
Vaccine ; 42(2): 295-309, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38105137

ABSTRACT

BACKGROUND: Human infections with the avian influenza A(H7N9) virus were first reported in China in 2013 and continued to occur in annual waves. In the 2016/2017 fifth wave, Yangtze River Delta (YRD) lineage viruses, which differed antigenically from those of earlier waves, predominated. METHODS: In this phase 2 double-blinded trial we randomized 720 adults ≥ 19 years of age to receive two injections of a YRD lineage inactivated A/Hong Kong/125/2017 fifth-wave H7N9 vaccine, given 21 days apart, at doses of 3.75, 7.5, and 15 µg of hemagglutinin (HA) with AS03A adjuvant and at doses of 15 and 45 µg of HA without adjuvant. RESULTS: Two doses of adjuvanted vaccine were required to induce HA inhibition (HI) antibody titers ≥ 40 in most participants. After two doses of the 15 µg H7N9 formulation, given with or without AS03 adjuvant, the proportion achieving a HI titer ≥ 40 against the vaccine strain at 21 days after the second vaccination was 65 % (95 % CI, 57 %-73 %) and 0 % (95 % CI, 0 %-4%), respectively. Among those who received two doses of the 15 µg adjuvanted formulation the proportion with HI titer ≥ 40 at 21 days after the second vaccination was 76 % (95 % CI, 66 %-84 %) in those 19-64 years of age and 49 % (95 % CI, 37 %-62 %) in those ≥ 65 years of age. Responses to the adjuvanted vaccine formulations did not vary by HA content. Antibody responses declined over time and responses against drifted H7N9 strains were diminished. Overall, the vaccines were well tolerated but, as expected, adjuvanted vaccines were associated with more frequent solicited systemic and local adverse events. CONCLUSIONS: AS03 adjuvant improved the immune responses to an inactivated fifth-wave H7N9 influenza vaccine, particularly in younger adults, but invoked lower responses to drifted H7N9 strains. These findings may inform future influenza pandemic preparedness strategies.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , Middle Aged , Adjuvants, Immunologic , Antibodies, Viral , Hemagglutination Inhibition Tests , Immunogenicity, Vaccine , Squalene , Vaccines, Inactivated
15.
Influenza Other Respir Viruses ; 17(12): e13228, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38111901

ABSTRACT

Background: Influenza is a substantial cause of annual morbidity and mortality; however, correctly identifying those patients at increased risk for severe disease is often challenging. Several severity indices have been developed; however, these scores have not been validated for use in patients with influenza. We evaluated the discrimination of three clinical disease severity scores in predicting severe influenza-associated outcomes. Methods: We used data from the Influenza Hospitalization Surveillance Network to assess outcomes of patients hospitalized with influenza in the United States during the 2017-2018 influenza season. We computed patient scores at admission for three widely used disease severity scores: CURB-65, Quick Sepsis-Related Organ Failure Assessment (qSOFA), and the Pneumonia Severity Index (PSI). We then grouped patients with severe outcomes into four severity tiers, ranging from ICU admission to death, and calculated receiver operating characteristic (ROC) curves for each severity index in predicting these tiers of severe outcomes. Results: Among 8252 patients included in this study, we found that all tested severity scores had higher discrimination for more severe outcomes, including death, and poorer discrimination for less severe outcomes, such as ICU admission. We observed the highest discrimination for PSI against in-hospital mortality, at 0.78. Conclusions: We observed low to moderate discrimination of all three scores in predicting severe outcomes among adults hospitalized with influenza. Given the substantial annual burden of influenza disease in the United States, identifying a prediction index for severe outcomes in adults requiring hospitalization with influenza would be beneficial for patient triage and clinical decision-making.


Subject(s)
Influenza, Human , Pneumonia , Adult , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Severity of Illness Index , Hospitalization , Patient Acuity , ROC Curve , Prognosis , Retrospective Studies , Intensive Care Units
16.
Vaccines (Basel) ; 11(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38005975

ABSTRACT

COVID-19 vaccination during pregnancy protects infants against symptomatic COVID-19. Vaccination of lactating mothers may offer additional protection, but our understanding of immune responses in breast milk is limited. We, therefore, performed a single-center prospective cohort study of lactating mothers who received a COVID-19 mRNA primary vaccine series to evaluate the durability, breadth, and neutralizing capacity of the antibody responses in breast milk. Spike IgG- and IgA-binding antibodies of ancestral SARS-CoV-2 in serum and breast milk were quantified over 9 months using Meso Scale Discovery (MSD) V-PLEX assays, and ancestral titers were compared to four variants of concern (Alpha, Beta, Delta, Gamma) at a single time point. Neutralizing antibodies against ancestral SARS-CoV-2 and Omicron BA.4/5 were compared before and after vaccination using a pseudovirus-neutralization assay. Eleven lactating mothers received either Pfizer BNT162b2 (7/11) or Moderna mRNA-1273 (4/11) vaccine primary series. IgG and IgA titers increased in serum and breast milk following each dose, peaking 1-4 weeks after series completion. Titers remained significantly elevated for 7-9 months, except for in breast milk IgA which returned to baseline within 1 month. Furthermore, binding antibodies against all included variants were detected in breast milk collected 1-3 weeks after series completion. However, while vaccination induced a strong neutralizing response against ancestral SARS-CoV-2 in serum and more modest response in breast milk, it did not induce neutralizing antibodies against Omicron BA.4/5 in either specimen type. This study demonstrates that maternal COVID-19 mRNA vaccination may enhance immune protection for infants through breast milk via increased IgG- and IgA-binding-and-neutralizing antibodies; although, variant-specific boosters may be required to optimize immune protection.

17.
Res Sq ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37790500

ABSTRACT

Background: Noroviruses (NoVs) are a leading cause of non-bacterial gastroenteritis in young children and adults worldwide. Snow Mountain Virus (SMV) is the prototype of NoV GII genotype 2 (GII.2) that has been developed as a viral model for human challenge models, an important tool for studying pathogenesis and immune response of NoV infections and for evaluating NoV vaccine candidates. Previous studies have identified blockade antibodies that block the binding of NoV virus-like particles (VLPs) to histo-blood group antigens (HBGAs) as a surrogate for neutralization in human Norwalk virus and GII.4 infections but little is known about SMV blockade antibodies. Methods: In this secondary data analysis study, blockade antibodies were characterized in pre-challenge and post-challenge serum samples from human subjects challenged with a new SMV inoculum. The correlation between blockade antibody geometric mean antibody titers (GMTs) and SMV-specific serum IgG/IgA GMTs were examined after stratifying the subjects by infection status. A linear mixed model was applied to test the association between HBGA blockade antibody concentrations and post-challenge days accounting for covariates and random effects. Results: Laboratory results from 33 SMV inoculated individuals were analyzed and 75.7% (25/33) participants became infected. Serum SMV-specific blockade antibodies, IgA, and IgG were all significantly different between infected and uninfected individuals beginning day 15 post-challenge. Within infected individuals, a significant correlation was observed between both IgG and IgA and blockade antibody concentration as early as day 6 post-challenge. Analysis of blockade antibody using the linear mixed model showed that infected individuals, when compared to uninfected individuals, had a statistically significant increase in blockade antibody concentrations across the post-challenge days. Among the post-challenge days, blockade antibody concentrations on days 15, 30, and 45 were significantly higher than those observed pre-challenge. The intraclass correlation coefficient (ICC) analysis indicated that the variability of blockade antibody titers is more observed between individuals rather than observations within subjects. Conclusions: These results indicate that HBGA-blockade antibody GMTs are generated after SMV challenge and the blockade antibodies were still detectable at day 45 post-challenge. These data indicate that the second generation of SMV inoculum is highly effective.

18.
iScience ; 26(10): 107967, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37822504

ABSTRACT

As SARS-CoV-2 becomes endemic, it is critical to understand immunity following early-life infection. We evaluated humoral responses to SARS-CoV-2 in 23 infants/young children. Antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with spike and RBD IgG antibody half-life nearly 4X as long as in adults. IgG subtype analysis revealed that while IgG1 formed the majority of the response in both groups, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.

19.
Lancet Microbe ; 4(11): e903-e912, 2023 11.
Article in English | MEDLINE | ID: mdl-37769676

ABSTRACT

BACKGROUND: Influenza burden varies across seasons, partly due to differences in circulating influenza virus types or subtypes. Using data from the US population-based surveillance system, Influenza Hospitalization Surveillance Network (FluSurv-NET), we aimed to assess the severity of influenza-associated outcomes in individuals hospitalised with laboratory-confirmed influenza virus infections during the 2010-11 to 2018-19 influenza seasons. METHODS: To evaluate the association between influenza virus type or subtype causing the infection (influenza A H3N2, A H1N1pdm09, and B viruses) and in-hospital severity outcomes (intensive care unit [ICU] admission, use of mechanical ventilation or extracorporeal membrane oxygenation [ECMO], and death), we used FluSurv-NET to capture data for laboratory-confirmed influenza-associated hospitalisations from the 2010-11 to 2018-19 influenza seasons for individuals of all ages living in select counties in 13 US states. All individuals had to have an influenza virus test within 14 days before or during their hospital stay and an admission date between Oct 1 and April 30 of an influenza season. Exclusion criteria were individuals who did not have a complete chart review; cases from sites that contributed data for three or fewer seasons; hospital-onset cases; cases with unidentified influenza type; cases of multiple influenza virus type or subtype co-infection; or individuals younger than 6 months and ineligible for the influenza vaccine. Logistic regression models adjusted for influenza season, influenza vaccination status, age, and FluSurv-NET site compared odds of in-hospital severity by virus type or subtype. When missing, influenza A subtypes were imputed using chained equations of known subtypes by season. FINDINGS: Data for 122 941 individuals hospitalised with influenza were captured in FluSurv-NET from the 2010-11 to 2018-19 seasons; after exclusions were applied, 107 941 individuals remained and underwent influenza A virus imputation when missing A subtype (43·4%). After imputation, data for 104 969 remained and were included in the final analytic sample. Averaging across imputed datasets, 57·7% (weighted percentage) had influenza A H3N2, 24·6% had influenza A H1N1pdm09, and 17·7% had influenza B virus infections; 16·7% required ICU admission, 6·5% received mechanical ventilation or ECMO, and 3·0% died (95% CIs had a range of less than 0·1% and are not displayed). Individuals with A H1N1pdm09 had higher odds of in-hospital severe outcomes than those with A H3N2: adjusted odds ratios (ORs) for A H1N1pdm09 versus A H3N2 were 1·42 (95% CI 1·32-1·52) for ICU admission; 1·79 (1·60-2·00) for mechanical ventilation or ECMO use; and 1·25 (1·07-1·46) for death. The adjusted ORs for individuals infected with influenza B versus influenza A H3N2 were 1·06 (95% CI 1·01-1·12) for ICU admission, 1·14 (1·05-1·24) for mechanical ventilation or ECMO use, and 1·18 (1·07-1·31) for death. INTERPRETATION: Despite a higher burden of hospitalisations with influenza A H3N2, we found an increased likelihood of in-hospital severe outcomes in individuals hospitalised with influenza A H1N1pdm09 or influenza B virus. Thus, it is important for individuals to receive an annual influenza vaccine and for health-care providers to provide early antiviral treatment for patients with suspected influenza who are at increased risk of severe outcomes, not only when there is high influenza A H3N2 virus circulation but also when influenza A H1N1pdm09 and influenza B viruses are circulating. FUNDING: The US Centers for Disease Control and Prevention.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Influenza, Human/therapy , Influenza, Human/prevention & control , Cross-Sectional Studies , Influenza A Virus, H3N2 Subtype , Influenza B virus , Hospitalization
20.
Nat Commun ; 14(1): 5851, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730701

ABSTRACT

The bivalent (original and Omicron BA.4/BA.5) mRNA-1273 COVID-19 vaccine was authorized to offer broader protection against COVID-19. We conducted a matched cohort study to evaluate the effectiveness of the bivalent vaccine in preventing hospitalization for COVID-19 (primary outcome) and medically attended SARS-CoV-2 infection and hospital death (secondary outcomes). Compared to individuals who did not receive bivalent mRNA vaccination but received ≥2 doses of any monovalent mRNA vaccine, the relative vaccine effectiveness (rVE) against hospitalization for COVID-19 was 70.3% (95% confidence interval, 64.0%-75.4%). rVE was consistent across subgroups and not modified by time since last monovalent dose or number of monovalent doses received. Protection was durable ≥3 months after the bivalent booster. rVE against SARS-CoV-2 infection requiring emergency department/urgent care and against COVID-19 hospital death was 55.0% (50.8%-58.8%) and 82.7% (63.7%-91.7%), respectively. The mRNA-1273 bivalent booster provides additional protection against hospitalization for COVID-19, medically attended SARS-CoV-2 infection, and COVID-19 hospital death.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , United States/epidemiology , 2019-nCoV Vaccine mRNA-1273 , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Vaccine Efficacy , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL