Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(49): eadh4179, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064560

ABSTRACT

Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.


Subject(s)
Carbon Monoxide , Electron Transport Complex IV , Electron Transport Complex IV/metabolism , Catalytic Domain , Carbon Monoxide/chemistry , Crystallography , Oxidation-Reduction , Oxygen/metabolism
2.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 698-708, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35647917

ABSTRACT

Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 Šresolution when exposed to XFEL radiation, which is an improvement of 0.15 Šover previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile QB pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Crystallization , Crystallography, X-Ray , Lipids/chemistry , Membrane Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Ubiquinone
3.
Nature ; 589(7841): 310-314, 2021 01.
Article in English | MEDLINE | ID: mdl-33268896

ABSTRACT

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Bacteriochlorophylls/metabolism , Binding Sites/drug effects , Chlorophyll/metabolism , Chlorophyll/radiation effects , Crystallography , Cytoplasm/metabolism , Electron Transport/drug effects , Electrons , Hyphomicrobiaceae/enzymology , Hyphomicrobiaceae/metabolism , Lasers , Models, Molecular , Oxidation-Reduction/radiation effects , Pheophytins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Protons , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism , Vitamin K 2/metabolism
4.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 937-946, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31588925

ABSTRACT

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.


Subject(s)
Electron Transport Complex IV/chemistry , Halorhodopsins/chemistry , Lipids/chemistry , Membrane Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Sensory Rhodopsins/chemistry , Bacterial Proteins/chemistry , Crystallization/methods , Crystallography, X-Ray/methods , Halobacteriaceae/enzymology , Hyphomicrobiaceae/enzymology , Thermus thermophilus/enzymology
5.
Nat Commun ; 9(1): 1753, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717135

ABSTRACT

Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport.


Subject(s)
Organic Anion Transporters/metabolism , Sodium/metabolism , Symporters/metabolism , Amino Acid Sequence , N-Acetylneuraminic Acid/metabolism , Organic Anion Transporters/chemistry , Protein Folding , Sequence Homology, Amino Acid , Substrate Specificity , Symporters/chemistry
6.
Structure ; 25(9): 1461-1468.e2, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28781082

ABSTRACT

Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RCvir). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography.


Subject(s)
Hyphomicrobiaceae/metabolism , Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Crystallography, X-Ray , Hyphomicrobiaceae/chemistry , Models, Molecular , Photosynthesis , Protein Conformation
7.
Sci Rep ; 7(1): 4518, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674417

ABSTRACT

Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba 3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba 3-type and aa 3-type cytochrome c oxidases around the proton-loading site are also described.


Subject(s)
Electron Transport Complex IV/chemistry , Models, Molecular , Protein Conformation , Temperature , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Ligands , Protein Binding , Protons , Structure-Activity Relationship , Thermus thermophilus/enzymology
8.
Nutrients ; 9(2)2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28212289

ABSTRACT

Gestational diabetes mellitus (GDM) is a growing concern, affecting an increasing number of pregnant women worldwide. By predisposing both the affected mothers and children to future disease, GDM contributes to an intergenerational cycle of obesity and diabetes. In order to stop this cycle, safe and effective treatments for GDM are required. This study sought to determine the treatment effects of dietary supplementation with myo-inositol (MI) and vitamins B2, B6, B12, and D in a mouse model of GDM (pregnant db/+ dams). In addition, the individual effects of vitamin B2 were examined. Suboptimal B2 increased body weight and fat deposition, decreased GLUT4 adipose tissue expression, and increased expression of inflammatory markers. MI supplementation reduced weight and fat deposition, and reduced expression of inflammatory markers in adipose tissue of mice on suboptimal B2. MI also significantly reduced the hyperleptinemia observed in db/+ mice, when combined with supplemented B2. MI was generally associated with adipose tissue markers of improved insulin sensitivity and glucose uptake, while the combination of vitamins B2, B6, B12, and D was associated with a reduction in adipose inflammatory marker expression. These results suggest that supplementation with MI and vitamin B2 could be beneficial for the treatment/prevention of GDM.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes, Gestational/drug therapy , Dietary Supplements , Inositol/administration & dosage , Riboflavin/administration & dosage , Vitamin D/administration & dosage , Vitamins/administration & dosage , Adipose Tissue/metabolism , Animals , Disease Models, Animal , Female , Inflammation Mediators/metabolism , Mice , Pregnancy
9.
Science ; 354(6319): 1552-1557, 2016 12 23.
Article in English | MEDLINE | ID: mdl-28008064

ABSTRACT

Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/ultrastructure , Imaging, Three-Dimensional , Crystallography , Cytoplasm/chemistry , Lasers , Motion Pictures , Protein Conformation, alpha-Helical , Protons , Retinaldehyde/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...