Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37189795

ABSTRACT

Ouabain (OUA) is a cardiotonic steroid that modulates Na+, K+ -ATPase activity. OUA has been identified as an endogenous substance that is present in human plasma, and it has been shown to be associated with the response to acute stress in both animals and humans. Chronic stress is a major aggravating factor in psychiatric disorders, including depression and anxiety. The present work investigates the effects of the intermittent administration of OUA (1.8 µg/kg) during the chronic unpredictable stress (CUS) protocol in a rat's central nervous system (CNS). The results suggest that the intermittent OUA treatment reversed CUS-induced HPA axis hyperactivity through a reduction in (i) glucocorticoids levels, (ii) CRH-CRHR1 expression, and by decreasing neuroinflammation with a reduction in iNOS activity, without interfering with the expression of antioxidant enzymes. These changes in both the hypothalamus and hippocampus may reflect in the rapid extinction of aversive memory. The present data demonstrate the ability of OUA to modulate the HPA axis, as well as to revert CUS-induced long-term spatial memory deficits.

2.
Biomedicines ; 10(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36428505

ABSTRACT

Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1ß in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.

3.
J Proteomics ; 258: 104530, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35182786

ABSTRACT

Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1 h, 6 h, 12 h, or 24 h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation. SIGNIFICANCE: Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.


Subject(s)
Crotalid Venoms , Neurotoxicity Syndromes , Snake Bites , Animals , Crotalid Venoms/chemistry , Crotalus/metabolism , Humans , Mice , Proteins/metabolism , Proteomics , Snake Bites/therapy
4.
Sci Rep ; 10(1): 20189, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214645

ABSTRACT

Sex differences are considered predictive factors in the development of several neurological diseases, which are also known to coincide with impaired phosphoinositide 3-kinase (PI3K)-AKT pathway activity, an essential signaling cascade involved in the control of several cellular functions such as autophagy and apoptosis. Here, under physiological conditions, we show important sex differences in the underlying balancing mechanisms that lead to similar AKT activity levels and autophagy and apoptosis processes in the two sexes. We demonstrate inverse sex-based expression of PTEN and Klotho, two important proteins that are known to negatively regulate the AKT pathway, and inverse sex-dependent levels of mTOR and FoxO3a activity. Taken together, our findings indicate that inverse sex-based regulation may be one of the underlying balancing mechanisms that differ between the sexes and a possible cause of sex-based autophagic and apoptotic responses to triggering situations that can lead to a sex-based predisposition to some neurological diseases.


Subject(s)
Autophagy/physiology , Glucuronidase/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction/physiology , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Female , Glucuronidase/genetics , Klotho Proteins , Male , Mice , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Sex Factors
5.
Front Nutr ; 7: 94, 2020.
Article in English | MEDLINE | ID: mdl-32850930

ABSTRACT

The aging process is characterized by a series of molecular and cellular changes over the years that could culminate in the deterioration of physiological parameters important to keeping an organism alive and healthy. Physical exercise, defined as planned, structured and repetitive physical activity, has been an important force to alter physiology and brain development during the process of human beings' evolution. Among several aspects of aging, the aim of this review is to discuss the balance between two vital cellular processes such as autophagy and apoptosis, based on the fact that physical exercise as a non-pharmacological strategy seems to rescue the imbalance between autophagy and apoptosis during aging. Therefore, the effects of different types or modalities of physical exercise in humans and animals, and the benefits of each of them on aging, will be discussed as a possible preventive strategy against neuronal death.

6.
J Proteomics ; 221: 103779, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32272218

ABSTRACT

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. SIGNIFICANCE: Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.


Subject(s)
Crotalid Venoms , Animals , Brazil , Cerebellum , Crotalid Venoms/toxicity , Crotalus , Mice , Proteomics
7.
J Proteomics, v. 221, 103779, jun. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3004

ABSTRACT

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. Significance Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.

8.
J. Proteomics ; 221: 103779, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17597

ABSTRACT

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. Significance Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.

9.
Neuropharmacology ; 140: 260-274, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30099050

ABSTRACT

Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-ß-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/ß-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.


Subject(s)
Hippocampus/cytology , Hippocampus/drug effects , Ouabain/pharmacology , Spatial Memory/drug effects , Animals , Axin Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/physiology , Male , Maze Learning , Microinjections , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Nucleocytoplasmic Transport Proteins/metabolism , Rats , Spatial Memory/physiology , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
10.
Aging (Albany NY) ; 7(12): 1094-111, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26647069

ABSTRACT

Aging is a multifactorial process associated with an increased susceptibility to neurodegenerative disorders which can be related to chronic inflammation. Chronic inflammation, however, can be characterized by the persistent elevated glucocorticoid (GCs) levels, activation of the proinflammatory transcription factor NF-кB, as well as an increase in cytokines. Interestingly, both NF-кB and cytokines can be even modulated by Glycogen Synthase Kinase 3 beta (GSK-3ß) activity, which is a key protein that can intermediate inflammation and metabolism, once it has a critical role in AKT signaling pathway, and can also intermediate WNT/ß-CATENIN signaling pathway. The aim of this study was to verify age-related changes in inflammatory status, as well as in the AKT and WNT signaling pathways. Results showed an age-related increase in neuroinflammation as indicated by NF-кB activation, TNF-α and GCs increased levels, a decrease in AKT activation and an increase in GSK-3ß activity in both 12- and 24- month old animals. Aging also seems to induce a progressive decrease in canonical WNT/ß-CATENIN signaling pathway once there is a decrease in DVL-2 levels and in the transcription of Axin2 gene. Little is known about the DVL-2 regulation as well as its roles in WNT signaling pathway, but for the first time it was suggested that DVL-2 expression can be changed along aging.


Subject(s)
Aging/metabolism , Glycogen Synthase Kinase 3/metabolism , Inflammation/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Gene Expression Regulation, Developmental , Glucocorticoids , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Hippocampus/physiology , NF-kappa B/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/genetics , Rats , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Wnt Proteins/genetics
11.
Curr Top Med Chem ; 15(21): 2116-38, 2015.
Article in English | MEDLINE | ID: mdl-26059361

ABSTRACT

Recent data from epidemiologic studies have shown that the majority of the public health costs are related to age-related disorders, and most of these diseases can lead to neuronal death. The specific signaling mechanisms underpinning neurodegeneration and aging are incompletely understood. Much work has been directed to the search for the etiology of neurodegeneration and aging and to new therapeutic strategies, including not only drugs but also non-pharmacological approaches, such as physical exercise and low-calorie dietary intake. The most important processes in aging-associated conditions, including neurodegeneration, include the mammalian (or mechanistic target of rapamycin (mTOR, sirtuin (SIRT and insulin/insulin growth factor 1 signaling (IIS pathways. These longevity pathways are involved in an array of different processes, including metabolism, cognition, stress response and brain plasticity. In this review we focus on the current advances involving the mTOR, SIRT and IIS longevity pathways during the course of healthy aging processes and neurodegenerative diseases, bringing new insights in the form of a better understanding of the signaling mechanisms underpinning neurodegeneration and how these differ from physiological normal aging processes. This also provides new targets for the therapeutic management and/or prevention of these devastating age-related disorders.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Longevity/physiology , Molecular Targeted Therapy/methods , Neurodegenerative Diseases/metabolism , TOR Serine-Threonine Kinases/metabolism , Aging/metabolism , Animals , Brain/metabolism , Humans , Neurodegenerative Diseases/drug therapy , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism
12.
PLoS One ; 10(5): e0125271, 2015.
Article in English | MEDLINE | ID: mdl-25961830

ABSTRACT

Renal insufficiency can have a negative impact on cognitive function. Neuroinflammation and changes in klotho levels associate with chronic kidney disease (CKD) and may play a role in the development of cognitive impairment (CI). The present study evaluates the correlation of cognitive deficits with neuroinflammation and soluble KLOTHO in the cerebral spinal fluid (CSF) and brain tissue of nephrectomized rats (Nx), with 5/6 renal mass ablation. Nx and sham Munich Wistar rats were tested over 4 months for locomotor activity, as well as inhibitory avoidance or novel object recognition, which started 30 days after the surgery. EMSA for Nuclear factor-κB and MILLIPLEXMAP or ELISA kit were used to evaluate cytokines, glucocorticoid and KLOTHO levels. Nx animals that showed a loss in aversive-related memory and attention were included in the CI group (Nx-CI) (n=14) and compared to animals with intact learning (Nx-M n=12 and Sham n=20 groups). CSF and tissue samples were collected 24 hours after the last behavioral test. The results show that the Nx-groups have increased NF-κB binding activity and tumor necrosis factor-alpha (TNF-α) levels in the hippocampus and frontal cortex, with these changes more pronounced in the Nx-CI group frontal cortex. In addition, the Nx-CI group showed significantly increased CSF glucocorticoid levels and TNF-α /IL-10 ratio compared to the Sham group. Klotho levels were decreased in Nx-CI frontal cortex but not in hippocampus, when compared to Nx-M and Sham groups. Overall, these results suggest that neuroinflammation mediated by frontal cortex NF-κB, TNF-α and KLOTHO signaling may contribute to Nx-induced CI in rats.


Subject(s)
Cognition Disorders/metabolism , Glucuronidase/metabolism , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Attention , Brain/metabolism , Cognition Disorders/etiology , Glucuronidase/cerebrospinal fluid , Glucuronidase/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Klotho Proteins , Male , Memory , NF-kappa B/genetics , Nephrectomy/adverse effects , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/genetics
13.
Neurobiol Aging ; 36(5): 1914-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25818175

ABSTRACT

Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS.


Subject(s)
Aging/metabolism , Fasting/physiology , Hippocampus/metabolism , Lipopolysaccharides/toxicity , Oxidative Stress/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Hippocampus/pathology , Male , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/prevention & control , Neurogenic Inflammation/etiology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Nucleotides, Cyclic/metabolism , Rats, Wistar , Thiobarbiturates/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...