Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
J Thorac Cardiovasc Surg ; 163(4): 1393-1403.e9, 2022 04.
Article En | MEDLINE | ID: mdl-32718702

OBJECTIVE: Acute kidney injury (AKI) is a serious complication of cardiac surgery with cardiopulmonary bypass (CPB). The aim of this study was to evaluate the effects of nitric oxide (NO) supplementation to the CPB circuit on the development of cardiac surgery-associated AKI. METHODS: This prospective randomized controlled study included 96 patients with moderate risk of renal complications who underwent elective cardiac surgery with CPB. The study protocol was registered at ClinicalTrials.gov (identifier NCT03527381). Patients were randomly allocated to either NO supplementation to the CPB bypass circuit (NO treatment group; n = 48) or usual care (control group; n = 48). In the NO treatment group, 40-ppm NO was administered during the entire CPB period. The primary outcome was the incidence of AKI. RESULTS: NO treatment was associated with a significant decrease in AKI incidence (10 cases [20.8%] vs 20 cases [41.6%] in the control group; relative risk, 0.5; 95% confidence interval, 0.26-0.95; P = .023) and a higher median urine output during CPB (2.6 mL/kg/h [interquartile range (IQR), 2.1-5.08 mL/kg/h] vs 1.7 mL/kg/h [IQR, 0.80-2.50 mL/kg/h]; P = .0002). The median urinary neutrophil gelatinase-associated lipocalin level at 4 hours after surgery was significantly lower in the NO treatment group (1.12 ng/mL [IQR, 0.75-5.8 ng/mL] vs 4.62 ng/mL [IQR, 2.02-34.55 ng/mL]; P = .005). In the NO treatment group, concentrations of NO metabolites were significantly increased at 5 minutes postclamping, at 5 minutes after declamping, and at the end of the operation. Concentrations of proinflammatory and anti-inflammatory mediators and free plasma hemoglobin did not differ significantly between the 2 groups. CONCLUSIONS: NO administration in patients at moderate risk of renal complications undergoing elective cardiac surgery with CPB was associated with a lower incidence of AKI.


Acute Kidney Injury/prevention & control , Cardiopulmonary Bypass , Nitric Oxide/administration & dosage , Postoperative Complications/prevention & control , Aged , Female , Hemoglobins/analysis , Humans , Lipocalin-2/urine , Male , Middle Aged , Nitrates/blood , Nitrogen Dioxide/blood , Prospective Studies
2.
Cells ; 9(8)2020 08 08.
Article En | MEDLINE | ID: mdl-32784475

A novel specific inhibitor of c-Jun N-terminal kinase, 11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), has a high affinity to JNK3 compared to JNK1/JNK2. The aim of this work was to study the mechanisms of neuroprotective activity of IQ-1S in the models of reversible focal cerebral ischemia (FCI) in Wistar rats. The animals were administered with an intraperitoneal injection of IQ-1S (5 and 25 mg/kg) or citicoline (500 mg/kg). Administration of IQ-1S exerted a pronounced dose-dependent neuroprotective effect, not inferior to the effects of citicoline. Administration of IQ-1S at doses of 5 and 25 mg/kg reduced the infarct size by 20% and 50%, respectively, 48 h after FCI, whereas administration of citicoline reduced the infarct size by 34%. The administration of IQ-1S was associated with a faster amelioration of neurological status. Control rats showed a 2.0-fold increase in phospho-c-Jun levels in the hippocampus compared to the corresponding values in sham-operated rats 4 h after FCI. Administration of IQ-1S at a dose of 25 mg/kg reduced JNK-dependent phosphorylation of c-Jun by 20%. Our findings suggest that IQ-1S inhibits JNK enzymatic activity in the hippocampus and protects against stroke injury when administered in the therapeutic and prophylactic regimen in the rat model of FCI.


Brain Ischemia/drug therapy , Hippocampus/drug effects , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Neuroprotective Agents , Oximes , Protein Kinase Inhibitors , Quinoxalines , Reperfusion Injury/drug therapy , Animals , Disease Models, Animal , Hippocampus/pathology , MAP Kinase Signaling System/drug effects , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Oximes/administration & dosage , Oximes/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Quinoxalines/administration & dosage , Quinoxalines/pharmacology , Rats , Rats, Wistar
4.
Hypertens Res ; 43(10): 1068-1078, 2020 10.
Article En | MEDLINE | ID: mdl-32382155

c-Jun N-terminal kinases (JNKs) are involved in the myocardial and aortic remodeling, increased arterial tone, and arterial blood pressure elevation associated with hypertension. The aim of the present study was to investigate the antihypertensive effect of a new JNK inhibitor, 1H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), on spontaneously hypertensive rats (SHRs). Experiments were performed using normotensive Wistar-Kyoto (WKY) rats and SHRs. Experimental groups of SHRs received IQ-1S intragastrically for 6 weeks in daily doses of 5 and 50 mg/kg; experimental groups of WKY rats received 50 mg/kg IQ-1S according to the same regimen. The IQ-1S administration regimen induced decreases in systolic blood pressure, mean arterial blood pressure, total peripheral resistance, blood viscosity, hematocrit, myocardial cell cross-sectional area, and aortic wall thickness in SHRs vs untreated SHRs. There were no significant differences in systolic blood pressure values between the control and experimental groups of WKY rats during the treatment period. A concentration-dependent decrease in the tone of carotid arterial rings isolated from SHRs was observed after JNK inhibitor application in vitro. Application of the JNK inhibitor diminished endothelin-1 secretion by human umbilical vein endothelial cells in vitro. The main mechanisms of the antihypertensive effect of IQ-1S included the attenuation of blood viscosity due to decreased hematocrit, a vasodilatory effect on arterial smooth muscle cells, and a decrease in endothelin-1 production by endothelial cells.


Hypertension/drug therapy , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Oximes/therapeutic use , Quinoxalines/therapeutic use , Animals , Aorta, Thoracic/drug effects , Blood Viscosity/drug effects , Drug Evaluation, Preclinical , Heart/drug effects , Hematocrit , Hemodynamics/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Oximes/pharmacology , Quinoxalines/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY
5.
Cardiol Res Pract ; 2020: 5983751, 2020.
Article En | MEDLINE | ID: mdl-32211203

OBJECTIVES: This work aimed to study the efficacy of hybrid 99mTc-Pyrophosphate SPECT/CT for diagnosis of latent inflammatory processes in the myocardium of patients with atrial fibrillation (AF). METHODS: The study comprised 34 patients aged 44 ± 9 years with AF of unknown etiology referred for radiofrequency ablation. The data were acquired using hybrid 99mTc-Pyrophosphate SPECT/CT. To evaluate and interpret the results of hybrid study and to determine localization of radiopharmaceutical accumulation, scintigraphic and CT images were fused. SPECT/CT results were compared with data of endomyocardial biopsy. RESULTS: Sensitivity, specificity, and accuracy of 99mTc-Pyrophosphate SPECT/CT in diagnosing myocarditis were 91%, 100%, and 94%, respectively. Proposed diagnostic criteria for myocarditis comprised intensity of the radiopharmaceutical accumulation in the myocardium and the ratios of focus/lung, focus/vertebral column, and focus/LV pool. Minimum cutoff values for the histologically verified myocarditis were >1.47 for focus/lung index, >0.11 for focus/vertebral column ratio, and >1.26 for focus/lung index. CONCLUSIONS: SPECT/CT-based quantitative assessment of 99mTc-Pyrophosphate accumulation in the myocardium is a highly informative noninvasive method for diagnosis of inflammatory process in the heart in patients with AF of undefined etiology.

6.
Molecules ; 24(9)2019 May 03.
Article En | MEDLINE | ID: mdl-31058815

c-Jun N-terminal kinase (JNK) is activated by various brain insults and is implicated in neuronal injury triggered by reperfusion-induced oxidative stress. Some JNK inhibitors demonstrated neuroprotective potential in various models, including cerebral ischemia/reperfusion injury. The objective of the present work was to study the neuroprotective activity of a new specific JNK inhibitor, IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt), in the model of global cerebral ischemia (GCI) in rats compared with citicoline (cytidine-5'-diphosphocholine), a drug approved for the treatment of acute ischemic stroke and to search for pleiotropic mechanisms of neuroprotective effects of IQ-1S. The experiments were performed in a rat model of ischemic stroke with three-vessel occlusion (model of 3VO) affecting the brachiocephalic artery, the left subclavian artery, and the left common carotid artery. After 7-min episode of GCI in rats, 25% of animals died, whereas survived animals had severe neurological deficit at days 1, 3, and 5 after GCI. At day 5 after GCI, we observing massive loss of pyramidal neurons in the hippocampal CA1 area, increase in lipid peroxidation products in the brain tissue, and decrease in local cerebral blood flow (LCBF) in the parietal cortex. Moreover, blood hyperviscosity syndrome and endothelial dysfunction were found after GCI. Administration of IQ-1S (intragastrically at a dose 50 mg/kg daily for 5 days) was associated with neuroprotective effect comparable with the effect of citicoline (intraperitoneal at a dose of 500 mg/kg, daily for 5 days).The neuroprotective effect was accompanied by a decrease in the number of animals with severe neurological deficit, an increase in the number of animals with moderate degree of neurological deficit compared with control GCI group, and an increase in the number of unaltered neurons in the hippocampal CA1 area along with a significant decrease in the number of neurons with irreversible morphological damage. In rats with IQ-1S administration, the LCBF was significantly higher (by 60%) compared with that in the GCI control. Treatment with IQ-1S also decreases blood viscosity and endothelial dysfunction. A concentration-dependent decrease (IC50 = 0.8 ± 0.3 µM) of tone in isolated carotid arterial rings constricted with phenylephrine was observed after IQ-1S application in vitro. We also found that IQ-1S decreased the intensity of the lipid peroxidation in the brain tissue in rats with GCI. 2.2-Diphenyl-1-picrylhydrazyl scavenging for IQ-1S in acetonitrile and acetone exceeded the corresponding values for ionol, a known antioxidant. Overall, these results suggest that the neuroprotective properties of IQ-1S may be mediated by improvement of cerebral microcirculation due to the enhanced vasorelaxation, beneficial effects on blood viscosity, attenuation of the endothelial dysfunction, and antioxidant/antiradical IQ-1S activity.


Brain Ischemia/prevention & control , Cytidine Diphosphate Choline/administration & dosage , Neuroprotective Agents/administration & dosage , Oximes/administration & dosage , Quinoxalines/administration & dosage , Reperfusion Injury/prevention & control , Animals , Brain Ischemia/metabolism , Cerebrovascular Circulation , Cytidine Diphosphate Choline/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Lipid Peroxidation/drug effects , Male , Neuroprotective Agents/pharmacology , Oximes/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Treatment Outcome
7.
J Thorac Cardiovasc Surg ; 157(6): 2328-2336.e1, 2019 06.
Article En | MEDLINE | ID: mdl-30447958

OBJECTIVES: The aim of this pilot study was to elucidate the effects of exogenous nitric oxide (NO) supply to the extracorporeal circulation circuit for cardioprotection against ischemia-reperfusion injury during coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB). METHODS: A total of 60 patients with coronary artery disease scheduled for CABG with CPB were enrolled in a prospective randomized study. Patients were allocated randomly to receive treatment according to standard or modified CPB protocol where 40-ppm NO was added to the CPB circuit during cardiac surgery. The primary endpoint was the measurement of cardiac troponin I (cTnI). The secondary end points consisted in the measurements of creatine kinase-muscle/brain fraction (CK-MB) and vasoactive inotropic score (VIS). RESULTS: NO delivered into the CPB circuit had a cardioprotective effect. The level of cTnI was significantly lower in NO-treated group compared with the control group 6 hours after surgery: 1.79 ± 0.39 ng/mL versus 2.41 ± 0.55 ng/mL, respectively (P = .001). The CK-MB value was significantly lower in NO-treated group compared with the control group 24 hours after surgery: 47.69 ± 8.08 U/L versus 62.25 ± 9.78 U/L, respectively (P = .001); and the VIS was significantly lower in the NO-treated group 6 hours after the intervention. CONCLUSIONS: NO supply to the CPB circuit during CABG exerted a cardioprotective effect and was associated with lower levels of VIS and cardiospecific blood markers cTnI and CK-MB.


Cardiopulmonary Bypass/methods , Cardiotonic Agents/therapeutic use , Coronary Artery Bypass/methods , Nitric Oxide/therapeutic use , Biomarkers/blood , Coronary Artery Bypass/adverse effects , Coronary Artery Disease/surgery , Creatine Kinase, MB Form/blood , Female , Humans , Male , Middle Aged , Myocardial Reperfusion Injury/prevention & control
8.
Front Pharmacol ; 9: 715, 2018.
Article En | MEDLINE | ID: mdl-30026697

In this article, we review the literature regarding the role of c-Jun N-terminal kinases (JNKs) in cerebral and myocardial ischemia/reperfusion injury. Numerous studies demonstrate that JNK-mediated signaling pathways play an essential role in cerebral and myocardial ischemia/reperfusion injury. JNK-associated mechanisms are involved in preconditioning and post-conditioning of the heart and the brain. The literature and our own studies suggest that JNK inhibitors may exert cardioprotective and neuroprotective properties. The effects of modulating the JNK-depending pathways in the brain and the heart are reviewed. Cardioprotective and neuroprotective mechanisms of JNK inhibitors are discussed in detail including synthetic small molecule inhibitors (AS601245, SP600125, IQ-1S, and SR-3306), ion channel inhibitor GsMTx4, JNK-interacting proteins, inhibitors of mixed-lineage kinase (MLK) and MLK-interacting proteins, inhibitors of glutamate receptors, nitric oxide (NO) donors, and anesthetics. The role of JNKs in ischemia/reperfusion injury of the heart in diabetes mellitus is discussed in the context of comorbidities. According to reviewed literature, JNKs represent promising therapeutic targets for protection of the brain and the heart against ischemic stroke and myocardial infarction, respectively. However, different members of the JNK family exert diverse physiological properties which may not allow for systemic administration of non-specific JNK inhibitors for therapeutic purposes. Currently available candidate JNK inhibitors with high therapeutic potential are identified. The further search for selective JNK3 inhibitors remains an important task.

9.
Front Physiol ; 9: 479, 2018.
Article En | MEDLINE | ID: mdl-29867537

Irreversible myocardial damage happens in the presence of prolonged and severe ischemia. Several phenomena protect the heart against myocardial infarction and other adverse outcomes of ischemia and reperfusion (IR), namely: hibernation related to stunned myocardium, ischemic preconditioning (IPC), ischemic post-conditioning, and their pharmacological surrogates. Ischemic preconditioning consists in the induction of a brief IR to reduce damage of the tissue caused by prolonged and severe ischemia. Nitric oxide (NO) signaling plays an essential role in IPC. Nitric oxide-sensitive guanylate cyclase/cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase type I-signaling pathway protects against the IR injury during myocardial infarction. Mitochondrial ATP-sensitive and Ca2+-activated K+ channels are involved in NO-mediated signaling in IPC. Independently of the cGMP-mediated induction of NO production, S-nitrosation represents a regulatory molecular mechanism similar to phosphorylation and is essential for IPC. Unlike conditioning phenomena, the mechanistic basis of myocardial stunning and hibernation remains poorly understood. In this review article, we hypothesize that the disruption of electrical syncytium of the myocardium may underly myocardial stunning and hibernation. Considering that the connexins are the building blocks of gap junctions which represent primary structural basis of electrical syncytium, we discuss data on the involvement of connexins into myocardial conditioning, stunning, and hibernation. We also show how NO-mediated signaling is involved in myocardial stunning and hibernation. Connexins represent an essential element of adaptation phenomena of the heart at the level of both the cardio- myocytes and the mitochondria. Nitric oxide targets mitochondrial connexins which may affect electrical syncytium continuum in the heart. Mitochondrial connexins may play an essential role in NO-dependent mechanisms of myocardial adaptation to ischemia.

10.
Heart Fail Rev ; 23(3): 481-497, 2018 05.
Article En | MEDLINE | ID: mdl-28849410

Diabetes mellitus is a chronic disease requiring lifelong control with hypoglycemic agents that must demonstrate excellent efficacy and safety profiles. In patients taking glucose-lowering drugs, hypoglycemia is a common cause of death associated with arrhythmias, increased thrombus formation, and specific effects of catecholamines due to sympathoadrenal activation. Focus is now shifting from merely glycemic control to multifactorial approach. In the context of individual drugs and classes, this article reviews interdisciplinary strategies evaluating metabolic effects of drugs for treatment of chronic heart failure (CHF) which can mask characteristic hypoglycemia symptoms. Hypoglycemia unawareness and cardiac autonomic neuropathy are discussed. Data suggesting that hypoglycemia modulates immune response are reviewed. The potential role of gut microbiota in improving health of patients with diabetes and CHF is emphasized. Reports stating that nondiabetic CHF patients can have life-threatening hypoglycemia associated with imbalance of thyroid hormones are discussed. Regular glycemic control based on HbA1c measurements and adequate pharmacotherapy remain the priorities in diabetes management. New antihyperglycemic drugs with safer profiles should be preferred in vulnerable CHF patients. Multidrug interactions must be considered. Emerging therapies with reduced hypoglycemia risk, telemedicine, sensor technologies, and genetic testing predicting hypoglycemia risk may help solving the challenges of hypoglycemia in CHF patients with diabetes. Interdisciplinary work may involve cardiologists, diabetologists/endocrinologists, immunologists, gastroenterologists, microbiologists, nutritionists, imaging specialists, geneticists, telemedicine experts, and other relevant specialists. This review emphasizes that systematic knowledge on pathophysiology of hypoglycemia in diabetic patients with CHF is largely lacking and the gaps in our understanding require further discoveries.


Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Heart Failure/etiology , Hypoglycemia/etiology , Hypoglycemic Agents/pharmacology , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Global Health , Heart Failure/blood , Heart Failure/epidemiology , Humans , Hypoglycemia/blood , Incidence
11.
Clin Exp Hypertens ; 39(6): 570-578, 2017.
Article En | MEDLINE | ID: mdl-28722518

The most common form of hypertension in young adults is isolated diastolic hypertension. Diastolic arterial pressure is determined by the total peripheral resistance and depends on both vascular hindrance and blood viscosity. The aim of our work was to study the efficiency of pentoxifylline (PTX) in young spontaneously hypertensive rats (SHRs) during the development of arterial hypertension. The effects of a treatment course with PTX (100 mg/kg/day p.o. for 6 weeks, from 5 to 11 weeks old) on the mean, systolic, and diastolic blood pressure (BP); stroke volume; cardiac output; total peripheral resistance (TPR); whole blood viscosity (BV); plasma viscosity; hematocrit; RBC aggregation and deformability; local cerebral blood flow (lCBF); and microvascularization of the visual cortex were studied in SHRs in comparison with control SHRs and Wistar Kyoto rats. PTX-treated SHRs had significantly lower systolic, diastolic, and mean BP (by 24%, 26%, and 15%, respectively) and BV (by 5-9%) and a higher erythrocyte deformability index (by 1.5-2%), lCBF (by 42%), average diameter of capillaries (by 11%), density of the capillary network (by 23%), and percentage of capillaries with a diameter of 3-7 µm in comparison with control SHRs. In conclusion, PTX exerted positive effects on the hemodynamic, hemorheological, and microcirculatory parameters in SHRs during the development of arterial hypertension.


Hemodynamics/drug effects , Hemorheology/drug effects , Hypertension/drug therapy , Hypertension/physiopathology , Pentoxifylline/pharmacology , Vasodilator Agents/pharmacology , Animals , Blood Pressure/drug effects , Blood Viscosity/drug effects , Cerebrovascular Circulation/drug effects , Diastole , Erythrocyte Aggregation/drug effects , Erythrocyte Deformability/drug effects , Hematocrit , Microvessels/drug effects , Microvessels/pathology , Pentoxifylline/therapeutic use , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Stroke Volume/drug effects , Vascular Resistance/drug effects , Vasodilator Agents/therapeutic use , Visual Cortex/blood supply
12.
Med Hypotheses ; 102: 19-22, 2017 May.
Article En | MEDLINE | ID: mdl-28478823

This article introduces a hypothesis on nanoparticle-mediated modulation of cholesterol crystal behaviour in the atherosclerotic plaques. The role of cholesterol crystals in progression of atherosclerosis is emphasized. Proposed mechanism of spontaneous cholesterol crystal formation in the organism is discussed. Mechanisms and factors associated with the nanoparticle-mediated modulation of cholesterol crystal behaviour are proposed. Authors hypothesize that specially designed nanoparticles may therapeutically modulate cholesterol crystal behaviour in atherosclerosis. Nano-sized agents used in stent coatings and imaging techniques can possibly prevent cholesterol crystallization in the diseased vessels. On the other hand, new nanotechnologies should be implemented with caution as certain types of nanoparticles could become crystal seeds for cholesterol deposited in the atherosclerotically damaged vascular walls causing destabilization of the plaques. Studying nanoparticle-induced alterations of cholesterol crystal formation requires multidisciplinary approach involving biomedical researchers, computer scientists, and physical chemists specializing in crystal growth. The proposed hypothesis on nanoparticle-mediated modulation of cholesterol crystal behaviour may be relevant to other medical conditions including gallbladder stones, arthritis, and ophthalmological diseases such as synchysis scintillans.


Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cholesterol/chemistry , Models, Cardiovascular , Molecular Targeted Therapy/methods , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Crystallization , Humans , Models, Chemical , Treatment Outcome
13.
14.
Biorheology ; 53(2): 93-107, 2016 07 26.
Article En | MEDLINE | ID: mdl-27472841

BACKGROUND: Systemic arterial pressure (AP) depends on two physiological variables: cardiac output (CO) and total peripheral resistance (TPR). The latter depends on vascular hindrance and blood viscosity (BV). However, the relative contributions of the vascular and rheological factors to TPR remain unclear. OBJECTIVE: The aim of our work was to study the haemodynamic and haemorheologic effects of a treatment course with pentoxifylline (PTX) in SHRs in an effort to assess the impact of the rheological factor on TPR and AP. METHODS: The effects of the treatment course with PTX (100 mg/kg/day p.o. for six weeks) on BV, plasma viscosity, haematocrit, erythrocyte aggregation and deformability, mean AP (MAP), stroke volume (SV), CO, and TPR were studied in SHRs and in control Wistar Kyoto (WKY) rats. RESULTS: PTX-treated SHRs had a lower BV, lower erythrocyte aggregation, and higher erythrocyte deformability index compared with the controls. The TPR level was higher by 43% compared with that in WKY rats and did not differ from the values obtained from control SHRs. In SHRs, moderate and strong positive correlations were found between BV and MAP and between BV and TPR. PTX-treated SHRs did not have any significant correlations between the above mentioned parameters. CONCLUSIONS: Treatment with PTX attenuated whole blood viscosity, but did not affect the AP and hemodynamic parameters in the experimental SHRs compared with the control SHRs. The magnitude of the rheologic effects of PTX was insufficient to cause appreciable decreases in TPR and AP.


Arterial Pressure/drug effects , Blood Viscosity/drug effects , Erythrocyte Aggregation/drug effects , Erythrocyte Deformability/drug effects , Hypertension/physiopathology , Pentoxifylline/pharmacology , Vascular Resistance/drug effects , Animals , Cardiac Output/drug effects , Heart Rate/drug effects , Hemodynamics , Hypertension/drug therapy , Rats , Rats, Inbred SHR , Rats, Inbred WKY
15.
Phytomedicine ; 23(7): 784-92, 2016 Jun 15.
Article En | MEDLINE | ID: mdl-27180226

BACKGROUND: Salidroside is a biologically active compound derived from Rhodiola rosea L. Studies showed that salidroside after i.v. injection is extensively metabolized to p-tyrosol and only trace amounts of salidroside are found in the brain tissue. OBJECTIVE: The aim of the study was to investigate the neuroprotective effects of p-tyrosol in the global cerebral ischemia-reperfusion (GCI) model. STUDY DESIGN: A total of 103 Wistar rats were assigned to groups of sham-operated (n=10), control (n=42), p-tyrosol-treated (n=36), and pentoxifylline-treated (n=15) animals. The rats of control, p-tyrosol-treated, and pentoxifylline-treated groups received intravenously 0.9% NaCl solution, 2% solution of p-tyrosol in doses of 5mg/kg, 10mg/kg, and 20mg/kg, and pentoxifylline in a dose of 100mg/kg, respectively, daily for 5 days. Rats were examined at days 1, 3, and 5 after GCI. After evaluation of neurological deficit, animals were euthanized for morphological and biochemical characterization. METHODS: Rats of control, p-tyrosol-treated, and pentoxifylline-treated groups were exposed to three-vessel model of GCI. Neurological deficit, numeric density of neurons in hippocampal CA1 region, and percentage of neurons with focal and total chromatolysis were studied. Biochemical study assessed contents of conjugated dienes and fluorescent products in brain homogenate. RESULTS: In control group, only 50.0% of rats survived by day 5 after the GCI; 38.1% of survived animals had severe neurologic deficit. In brain tissue of PTX-treated rats, the levels of diene conjugates and fluorescent products were 79% and 73%, respectivley, at day 5 compared with control. Differences in diene conjugates were statistically significant compared with control. The survival rate of animals treated with 20mg/kg p-tyrosol was 82.3% at day 5 after GCI. In p-tyrosol-treated GCI rats, the numeric density of neurons in the hippocampal CA1 region was higher by 31% compared with control. The percentage of neurons with focal and total chromatolysis decreased by 27% and 43%, respectively. At day 5 after GCI, the levels of conjugated dienes and fluorescent products were significantly lower (by 37% and 45%, respectively) in group of animals treated with 20mg/kg p-tyrosol compared with control. Moderate neuroprotective effects of 5mg/kg p-tyrosol administration were documented only at day 5 after GCI. In case of 10mg/kg p-tyrosol administration, neuroprotection was documented sooner: at day 1 or 3 after GCI. However, administration of 5 and 10mg/kg p-tyrosol did not affect animal survival. CONCLUSION: Course administration of intravenous p-tyrosol in a dose of 20mg/kg increased survival, reduced neurological deficit after GCI, attenuated neuronal damage in the hippocampus, and attenuated lipid peroxidation in brain tissue in animals subject to GCI with reperfusion.


Brain Ischemia/prevention & control , Neuroprotective Agents/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Reperfusion Injury/prevention & control , Animals , Antioxidants/pharmacology , Behavior, Animal/drug effects , Brain Ischemia/pathology , Brain Ischemia/psychology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , Cerebral Infarction/pathology , Cerebral Infarction/prevention & control , Motor Activity/drug effects , Neurons/drug effects , Pentoxifylline/pharmacology , Phenylethyl Alcohol/pharmacology , Rats , Rats, Wistar , Reperfusion Injury/pathology , Reperfusion Injury/psychology , Vasodilator Agents/pharmacology
16.
Ann Noninvasive Electrocardiol ; 21(6): 548-556, 2016 Nov.
Article En | MEDLINE | ID: mdl-26947948

BACKGROUND: Control of sympathetic hyperactivity is pivotal for treatment of heart failure (HF) in patients with coronary artery disease (CAD). Our earlier studies demonstrated that the auricular pulsed electrical stimulation of the vagus nerve (VNS) beneficially affected condition of CAD patients with HF. The aim of our study was to evaluate changes in heart rate (HR) and the levels of heat shock proteins in peripheral blood lymphocytes in patients with CAD in the course of VNS. METHODS: The study comprised 70 individuals aged 50-68 years with chronic coronary insufficiency, severe left ventricular dysfunction, and NYHA functional class (FC) III-IV HF. Main group included 63 patients who received VNS course (group 1). Control patients (n = 7) received sham therapy (group 2). RESULTS: According to the results of 6-minute walk test and 24-hour ECG monitoring, administration of VNS improved clinical condition of 58 of 63 patients, decreased HF FC, and attenuated HR. Clinical condition in sham therapy group did not change. Immunoenzyme method demonstrated that hsp70 and hsp60 contents in peripheral blood lymphocyte lysate increased by 58% and 48% (P < 0.05), respectively, in patients who initially had HR < 80 bpm. The hsp70 level significantly increased and hsp60 level remained unchanged in patients with initial HR > 80 bpm. CONCLUSIONS: Correction of autonomous nervous status by VNS attenuated HR and improved functional state of the heart in CAD patients. Cardiotropic effect of VNS was the most pronounced in patients with preserved endogenous stress-limiting systems associated with hsp60 and/or hsp70.


Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Electric Stimulation Therapy , Sympathetic Nervous System/physiopathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/therapy , Aged , Biomarkers/blood , Electrocardiography , Exercise Test , Female , Heart Rate/physiology , Heat-Shock Proteins/blood , Humans , Male , Middle Aged , Vagus Nerve/physiopathology
17.
Curr Hypertens Rep ; 17(12): 90, 2015 Dec.
Article En | MEDLINE | ID: mdl-26482895

UNLABELLED: The aims of the study were to evaluate the effects of renal sympathetic denervation (RSD) on the heart and to identify the predictors of RSD efficacy in patients with resistant arterial hypertension. The study comprised 60 RSD patients (54.6 ± 9.5 years) who received full-dose antihypertensive therapy (4.1 drugs) including diuretics. Initially, 58.6% of patients had abnormal left ventricular (LV) diastolic function. All patients received echocardiography before and 24 weeks after RSD. Renal sympathetic denervation was achieved through the endovascular radiofrequency ablation (RFA) of the renal arteries. Drug therapy continued for the entire period of observation. After RSD, all patients were retrospectively assigned to two groups: group 1 comprised patients (n = 22; 36.7%) in whom the myocardial mass (MM) of the left ventricle decreased by more than 10 g after RSD; group 2 comprised patients (n = 38; 63.3%) in whom LV MM increased or decreased by less than 10 g. Anthropometry, arterial blood pressure, heart rate, therapy, and LV end-diastolic dimensions (EDD) were comparable in these groups. After RSD, the values of office blood pressure significantly decreased and MM regressed by more than 10 g in 36.7% of patients; LV diastolic function normalized in 31% of patients, and diastolic dysfunction improved in 14% of patients. The study found the associations between the initial LV wall dimensions and LV MM changes. Unlike LV EDD, arterial blood pressure, or heart rate, the initial values of LV wall thickness predicted LV MM regress. TRIAL REGISTRATION: #NCT01499810 https://clinicaltrials.gov/ct2/show/NCT01499810.


Hypertension/therapy , Kidney/surgery , Blood Pressure , Echocardiography , Female , Humans , Hypertension/physiopathology , Kidney/physiopathology , Male , Middle Aged , Renal Artery/surgery , Sympathectomy/methods
18.
Front Cell Dev Biol ; 3: 19, 2015.
Article En | MEDLINE | ID: mdl-25883934

Here we review available data on nitric oxide (NO)-mediated signaling in skeletal muscle during physical exercise. Nitric oxide modulates skeletal myocyte function, hormone regulation, and local microcirculation. Nitric oxide underlies the therapeutic effects of physical activity whereas the pharmacological modulators of NO-mediated signaling are the promising therapeutic agents in different diseases. Nitric oxide production increases in skeletal muscle in response to physical activity. This molecule can alter energy supply in skeletal muscle through hormonal modulation. Mitochondria in skeletal muscle tissue are highly abundant and play a pivotal role in metabolism. Considering NO a plausible regulator of mitochondrial biogenesis that directly affects cellular respiration, we discuss the mechanisms of NO-induced mitochondrial biogenesis in the skeletal muscle cells. We also review available data on myokines, the molecules that are expressed and released by the muscle fibers and exert autocrine, paracrine and/or endocrine effects. The article suggests the presence of putative interplay between NO-mediated signaling and myokines in skeletal muscle. Data demonstrate an important role of NO in various diseases and suggest that physical training may improve health of patients with diabetes, chronic heart failure, and even degenerative muscle diseases. We conclude that NO-associated signaling represents a promising target for the treatment of various diseases and for the achievement of better athletic performance.

19.
Front Cell Dev Biol ; 2: 73, 2014.
Article En | MEDLINE | ID: mdl-25610830

This article reviews the existing knowledge about the effects of physical exercise on nitric oxide (NO) production in the cardiopulmonary system. The authors review the sources of NO in the cardiopulmonary system; involvement of three forms of NO synthases (eNOS, nNOS, and iNOS) in exercise physiology; exercise-induced modulation of NO and/or NOS in physiological and pathophysiological conditions in human subjects and animal models in the absence and presence of pharmacological modulators; and significance of exercise-induced NO production in health and disease. The authors suggest that physical activity significantly improves functioning of the cardiovascular system through an increase in NO bioavailability, potentiation of antioxidant defense, and decrease in the expression of reactive oxygen species-forming enzymes. Regular physical exercises are considered a useful approach to treat cardiovascular diseases. Future studies should focus on detailed identification of (i) the exercise-mediated mechanisms of NO exchange; (ii) optimal exercise approaches to improve cardiovascular function in health and disease; and (iii) physical effort thresholds.

20.
Front Physiol ; 5: 501, 2014.
Article En | MEDLINE | ID: mdl-25601838

Patients with metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) have high risk of microcirculation complications and microangiopathies. An increase in thrombogenic risk is associated with platelet hyperaggregation, hypercoagulation, and hyperfibrinolysis. Factors leading to platelet activation in MetS and T2DM comprise insulin resistance, hyperglycemia, non-enzymatic glycosylation, oxidative stress, and inflammation. This review discusses the role of nitric oxide (NO) in the regulation of platelet adhesion and aggregation processes. NO is synthesized both in endotheliocytes, smooth muscle cells, macrophages, and platelets. Modification of platelet NO-synthase (NOS) activity in MetS patients can play a central role in the manifestation of platelet hyperactivation. Metabolic changes, accompanying T2DM, can lead to an abnormal NOS expression and activity in platelets. Hyperhomocysteinemia, often accompanying T2DM, is a risk factor for cardiovascular accidents. Homocysteine can reduce NO production by platelets. This review provides data on the insulin effects in platelets. Decrease in a number and sensitivity of the insulin receptors on platelets in T2DM can cause platelet hyperactivation. Various intracellular mechanisms of anti-aggregating insulin effects are discussed. Anti-aggregating effects of insulin are mediated by a NO-induced elevation of cGMP and upregulation of cAMP- and cGMP-dependent pathways. The review presents data suggesting an ability of platelets to synthesize humoral factors stimulating thrombogenesis and inflammation. Proinflammatory cytokines are considered as markers of T2DM and cardiovascular complications and are involved in the development of dyslipidemia and insulin resistance. The article provides an evaluation of NO-mediated signaling pathway in the effects of cytokines on platelet aggregation. The effects of the proinflammatory cytokines on functional activity of platelets are demonstrated.

...