Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AIMS Public Health ; 11(2): 432-458, 2024.
Article in English | MEDLINE | ID: mdl-39027393

ABSTRACT

Recurrent Neural Networks (RNNs), a type of machine learning technique, have recently drawn a lot of interest in numerous fields, including epidemiology. Implementing public health interventions in the field of epidemiology depends on efficient modeling and outbreak prediction. Because RNNs can capture sequential dependencies in data, they have become highly effective tools in this field. In this paper, the use of RNNs in epidemic modeling is examined, with a focus on the extent to which they can handle the inherent temporal dynamics in the spread of diseases. The mathematical representation of epidemics requires taking time-dependent variables into account, such as the rate at which infections spread and the long-term effects of interventions. The goal of this study is to use an intelligent computing solution based on RNNs to provide numerical performances and interpretations for the SEIR nonlinear system based on the propagation of the Zika virus (SEIRS-PZV) model. The four patient dynamics, namely susceptible patients S(y), exposed patients admitted in a hospital E(y), the fraction of infective individuals I(y), and recovered patients R(y), are represented by the epidemic version of the nonlinear system, or the SEIR model. SEIRS-PZV is represented by ordinary differential equations (ODEs), which are then solved by the Adams method using the Mathematica software to generate a dataset. The dataset was used as an output for the RNN to train the model and examine results such as regressions, correlations, error histograms, etc. For RNN, we used 100% to train the model with 15 hidden layers and a delay of 2 seconds. The input for the RNN is a time series sequence from 0 to 5, with a step size of 0.05. In the end, we compared the approximated solution with the exact solution by plotting them on the same graph and generating the absolute error plot for each of the 4 cases of SEIRS-PZV. Predictions made by the model appeared to be become more accurate when the mean squared error (MSE) decreased. An increased fit to the observed data was suggested by this decrease in the MSE, which suggested that the variance between the model's predicted values and the actual values was dropping. A minimal absolute error almost equal to zero was obtained, which further supports the usefulness of the suggested strategy. A small absolute error shows the degree to which the model's predictions matches the ground truth values, thus indicating the level of accuracy and precision for the model's output.

2.
PLoS One ; 19(4): e0298451, 2024.
Article in English | MEDLINE | ID: mdl-38635576

ABSTRACT

The paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for forecasting the propagation of malaria via the use of an AI-based recurrent neural network (RNN). The model is classified into two groups, consisting of humans and mosquitoes. To develop the model, the traditional Ross-Macdonald model is expanded upon, allowing for a more comprehensive analysis of the intricate dynamics at play. To gain a deeper understanding of the extended Ross model, we employ RNN, treating it as an initial value problem involving a system of first-order ordinary differential equations, each representing one of the seven profiles. This method enables us to obtain valuable insights and elucidate the complexities inherent in the propagation of malaria. Mosquitoes and humans constitute the two cohorts encompassed within the exposition of the mathematical dynamical model. Human dynamics are comprised of individuals who are susceptible, exposed, infectious, and in recovery. The mosquito population, on the other hand, is divided into three categories: susceptible, exposed, and infected. For RNN, we used the input of 0 to 300 days with an interval length of 3 days. The evaluation of the precision and accuracy of the methodology is conducted by superimposing the estimated solution onto the numerical solution. In addition, the outcomes obtained from the RNN are examined, including regression analysis, assessment of error autocorrelation, examination of time series response plots, mean square error, error histogram, and absolute error. A reduced mean square error signifies that the model's estimates are more accurate. The result is consistent with acquiring an approximate absolute error close to zero, revealing the efficacy of the suggested strategy. This research presents a novel approach to solving the malaria propagation model using recurrent neural networks. Additionally, it examines the behavior of various profiles under varying initial conditions of the malaria propagation model, which consists of a system of ordinary differential equations.


Subject(s)
Culicidae , Malaria , Animals , Humans , Reproducibility of Results , Neural Networks, Computer , Malaria/epidemiology , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL