Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 14(10): 17905-14, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25264953

ABSTRACT

Chalcogenide glass fibers are promising photonic tools to develop Fiber Evanescent Wave Spectroscopy (FEWS) optical sensors working in the mid-infrared region. Numerous pioneering works have already been carried out showing their efficiency, especially for bio-medical applications. Nevertheless, this technology remains confined to academic studies at the laboratory scale because chalcogenide glass fibers are difficult to shape to produce reliable, sensitive and compact sensors. In this paper, a new method for designing and fabricating a compact and robust sensing head with a selenide glass fiber is described. Compact looped sensing heads with diameter equal to 2 mm were thus shaped. This represents an outstanding achievement considering the brittleness of such uncoated fibers. FEWS experiments were implemented using alcoholic solutions as target samples showing that the sensitivity is higher than with the routinely used classical fiber. It is also shown that the best compromise in term of sensitivity is to fabricate a sensing head including two full loops. From a mechanical point of view, the breaking loads of the loop shaped head are also much higher than with classical fiber. Finally, this achievement paves the way for the use of mid-infrared technology during in situ and even in vivo medical operations. Indeed, is is now possible to slide a chalcogenide glass fiber in the operating channel of a standard 2.8 mm diameter catheter.

2.
Opt Express ; 18(25): 26754-9, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21165025

ABSTRACT

Novel telluride glasses with high electrical conductivity, wide infrared transparency and good resistance to crystallization are used to design an opto-electrophoretic sensor for detection and identification of hazardous microorganisms. The sensor is based on an attenuated total reflectance element made of Ge-As-Te glass that serves as both an optical sensing zone and an electrode for driving the migration of bio-molecules within the evanescent wave of the sensor. An electric field is applied between the optical element and a counter electrode in order to induce the migration of bio-molecules carrying surface charges. The effect of concentration and applied voltage is tested and the migration effect is shown to be reversible upon switching the electric field. The collected signal is of high quality and can be used to identify different bacterial genus through statistical spectral analysis. This technique therefore provides the ability to detect hazardous microorganisms with high specificity and high sensitivity in aqueous environments. This has great potential for online monitoring of water quality.


Subject(s)
Biopolymers/analysis , Biosensing Techniques/instrumentation , Chalcogens/chemistry , Conductometry/instrumentation , Electrophoresis/instrumentation , Fiber Optic Technology/instrumentation , Refractometry/instrumentation , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Glass/chemistry
3.
J Biomed Opt ; 14(5): 054033, 2009.
Article in English | MEDLINE | ID: mdl-19895135

ABSTRACT

Fiber evanescent wave spectroscopy (FEWS) explores the mid-infrared domain, providing information on functional chemical groups represented in the sample. Our goal is to evaluate whether spectral fingerprints obtained by FEWS might orientate clinical diagnosis. Serum samples from normal volunteers and from four groups of patients with metabolic abnormalities are analyzed by FEWS. These groups consist of iron overloaded genetic hemochromatosis (GH), iron depleted GH, cirrhosis, and dysmetabolic hepatosiderosis (DYSH). A partial least squares (PLS) logistic method is used in a training group to create a classification algorithm, thereafter applied to a test group. Patients with cirrhosis or DYSH, two groups exhibiting important metabolic disturbances, are clearly discriminated from control groups with AUROC values of 0.94+/-0.05 and 0.90+/-0.06, and sensibility/specificity of 8684% and 8787%, respectively. When pooling all groups, the PLS method contributes to discriminate controls, cirrhotic, and dysmetabolic patients. Our data demonstrate that metabolic profiling using infrared FEWS is a possible way to investigate metabolic alterations in patients.


Subject(s)
Algorithms , Biomarkers/blood , Blood Chemical Analysis/methods , Diagnosis, Computer-Assisted/methods , Metabolic Diseases/blood , Metabolic Diseases/diagnosis , Spectrophotometry, Infrared/methods , Adolescent , Adult , Aged , Female , Fiber Optic Technology/methods , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
4.
Sensors (Basel) ; 9(9): 7398-411, 2009.
Article in English | MEDLINE | ID: mdl-22423209

ABSTRACT

Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 µm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors.

5.
Appl Opt ; 47(13): C114-23, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18449231

ABSTRACT

Chalcogenide coatings are investigated to obtain either optical components for spectral applications or optochemical sensors in the mid-infrared. The deposition of Ge(15)Sb(20)S(65) and Te(20)As(30)Se(50) chalcogenide glasses is performed by two physical techniques: electron-beam and pulsed-laser deposition. The quality of the film is analyzed by scanning electron microscopy, atomic force microscopy, and energy dispersive spectroscopy to characterize the morphology, topography, and chemical composition. The optical properties and optical constants are also determined. A CF(4) dry etching is performed on these films to obtain a channeled optical waveguide. For a passband filter made by electron-beam deposition, cryolite as a low-refractive-index material and chalcogenide glasses as high-refractive-index materials are used to favor a large refractive-index contrast. A shift of a centered wavelength of a photosensitive passband filter is controlled by illumination time.

SELECTION OF CITATIONS
SEARCH DETAIL