Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Infect Dis ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39269503

ABSTRACT

BACKGROUND: High priority efforts are underway to support the development of novel mucosal COVID-19 vaccines, such as the US Government's Project NextGen and the Center for Epidemic Preparedness Innovations' goal to respond to the next pandemic with a new vaccine in 100 days. However, there is limited consensus about the complementary role of mucosal immunity in disease progression and how to evaluate immunogenicity of mucosal vaccines. This study investigated the role of oral mucosal antibody responses in viral clearance and COVID-19 symptom duration. METHODS: Participants with PCR-confirmed SARS-CoV-2 infection provided oral fluid for testing with SARS-CoV-2 antibody multiplex assays, nasal swabs for RT-PCR and symptom information at up to eight follow-ups from April 2020 to February 2022. RESULTS: High and moderate oral fluid anti-spike (S) secretory IgA (SIgA) post infection was associated with significantly faster viral clearance and symptom resolution across age groups with effect sizes equivalent to having COVID-19 vaccine immunity at the time of infection. Those with high and moderate anti-S SIgA cleared the virus 14 days (95% CI: 10-18) and recovered 9-10 days (95% CI: 6-14) earlier. Delayed and higher anti-S IgG was associated with significantly longer time to clearance and recovery. Experiencing symptoms longer than four weeks was associated with lower anti-RBD SIgA 15-30 days after infection onset (p<0.001). CONCLUSION: Robust mucosal SIgA early post infection appears to support faster clearance of SARS-CoV-2 and recovery from COVID-19 symptoms. This research underscores the importance of harmonizing mucosal immune response assays to evaluate new mucosal vaccines.

3.
medRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39006428

ABSTRACT

Introduction: The relationship between SARS-CoV-2 viral dynamics during acute infection and the development of long COVID is largely unknown. Methods: A total of 7361 asymptomatic community-dwelling people enrolled in the Test Us at Home parent study between October 2021 and February 2022. Participants self-collected anterior nasal swabs for SARS-CoV-2 RT-PCR testing every 24-48 hours for 10-14 days, regardless of symptom or infection status. Participants who had no history of COVID-19 at enrollment and who were subsequently found to have ≥1 positive SARS-CoV-2 RT-PCR test during the parent study were recontacted in August 2023 and asked whether they had experienced long COVID, defined as the development of new symptoms lasting 3 months or longer following SARS-CoV-2 infection. Participant's cycle threshold values were converted into viral loads, and slopes of viral clearance were modeled using post-nadir viral loads. Using a log binomial model with the modeled slopes as the exposure, we calculated the relative risk of subsequently developing long COVID with 1-2 symptoms, 3-4 symptoms, or 5+ symptoms, adjusting for age, number of symptoms, and SARS-CoV-2 variant. Adjusted relative risk (aRR) of individual long COVID symptoms based on viral clearance was also calculated. Results: 172 participants were eligible for analyses, and 59 (34.3%) reported experiencing long COVID. The risk of long COVID with 3-4 symptoms and 5+ symptoms increased by 2.44 times (aRR: 2.44; 95% CI: 0.88-6.82) and 4.97 times (aRR: 4.97; 95% CI: 1.90-13.0) per viral load slope-unit increase, respectively. Participants who developed long COVID had significantly longer times from peak viral load to viral clearance during acute disease than those who never developed long COVID (8.65 [95% CI: 8.28-9.01] vs. 10.0 [95% CI: 9.25-10.8]). The slope of viral clearance was significantly positively associated with long COVID symptoms of fatigue (aRR: 2.86; 95% CI: 1.22-6.69), brain fog (aRR: 4.94; 95% CI: 2.21-11.0), shortness of breath (aRR: 5.05; 95% CI: 1.24-20.6), and gastrointestinal symptoms (aRR: 5.46; 95% CI: 1.54-19.3). Discussion: We observed that longer time from peak viral load to viral RNA clearance during acute COVID-19 was associated with an increased risk of developing long COVID. Further, slower clearance rates were associated with greater number of symptoms of long COVID. These findings suggest that early viral-host dynamics are mechanistically important in the subsequent development of long COVID.

4.
Clin Exp Rheumatol ; 42(7): 1487-1490, 2024 07.
Article in English | MEDLINE | ID: mdl-38607687

ABSTRACT

OBJECTIVES: Autoantibodies have been described in the post-infectious state, specifically after Lyme disease and COVID-19. We aimed to describe the prevalence and potential clinical utility of several commercially available autoantibodies after these infections. METHODS: Euroimmun panels (myositis, scleroderma and ANA5) were assayed using sera from patients with Lyme disease with return to health (RTH) (n=70), post-treatment Lyme disease (n=58), COVID-19 RTH (n=47) and post-acute symptoms of COVID-19 (n=22). The post-Lyme questionnaire of symptoms (PLQS) was used to determine symptom burden after Lyme disease. RESULTS: There was no statistically significant difference in autoantibody prevalence across the four groups (p=0.746). A total of 21 different antibodies were found in the Lyme cohorts and 8 different antibodies in the COVID-19 cohorts. The prevalence of scleroderma-associated antibodies was higher after Lyme disease than COVID-19 (12.5% vs. 2.9%, p=0.026). There was no statistically significant difference in symptom burden based on antibody status. CONCLUSIONS: Several autoantibodies were found after Borrelia burgdorferi and SARS-CoV2 infection, although the prevalence was similar in those with persistent symptoms and those who returned to health. While our data show no difference in autoantibody prevalence across the four post-infectious states, we do not imply that autoantibodies are irrelevant in this setting. Rather, this study highlights the need for novel antibody discovery in larger cohorts of well-defined patient populations.


Subject(s)
Autoantibodies , COVID-19 , Lyme Disease , Humans , Autoantibodies/blood , Lyme Disease/immunology , Lyme Disease/epidemiology , Lyme Disease/diagnosis , Lyme Disease/blood , COVID-19/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/complications , Female , Male , Middle Aged , Adult , Aged , SARS-CoV-2/immunology
5.
Open Forum Infect Dis ; 11(3): ofae027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38449921

ABSTRACT

Background: Few longitudinal studies available characterize long COVID outcomes out to 24 months, especially in people with nonsevere acute coronavirus disease 2019 (COVID-19). This study sought to prospectively characterize incidence and duration of long COVID symptoms and their association with quality of life (QoL) from 1-24 months after mild-to-moderate COVID-19 using validated tools in a diverse cohort of unvaccinated people infected with SARS-CoV-2 in 2020. Methods: At 1-3, 6, 12, 18, and 24 months post-COVID-19, 70 participants had orthostatic vital signs measured, provided blood, and completed surveys characterizing symptoms, QoL, and return to pre-COVID-19 health and activities using validated tools (FLU-PRO+, Fatigue Severity Scale, Insomnia Severity Index, General Practitioner Assessment of Cognition, Patient Health Questionnaire Depression 8-Item, Generalized Anxiety Disorder 7-Item, 36-Item Short-Form Health Survey, EuroQol EQ-5D-5L). Results: During the study period, 33% of participants experienced long COVID (had not returned to pre-COVID-19 health status and reported at least 1 symptom >90 days postinfection); 8% had not returned to their pre-COVID-19 health status 24 months postinfection. Long COVID symptoms peaked 6 months post-COVID-19, frequently causing activity limitations. Having long COVID was significantly associated with decreased QoL in multiple domains. Frequencies of orthostatic hypotension and tachycardia reflected levels reported in the general population. Within-person weight increased significantly between months 1 and 6. Long COVID was associated with pre-COVID-19 obesity and hyperlipidemia, but not with high-sensitivity C-reactive protein levels 1-3 months postinfection. Conclusions: Long COVID occurs in a significant proportion of unvaccinated people, even if the acute illness was not severe. Long COVID prevalence peaked 6-12 months post-COVID-19, and a small proportion of participants still reported not returning to their pre-COVID-19 health status 24 months post-COVID-19.

6.
J Infect Dis ; 230(2): e305-e317, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38299308

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition caused by recent infection with severe acute respiratory syndrome coronavirus 2, but the underlying immunological mechanisms driving this distinct syndrome are unknown. METHODS: We utilized high-dimensional flow cytometry, cell-free (cf) DNA, and cytokine and chemokine profiling to identify mechanisms of critical illness distinguishing MIS-C from severe acute coronavirus disease 2019 (SAC). RESULTS: Compared to SAC, MIS-C patients demonstrated profound innate immune cell death and features of emergency myelopoiesis (EM), an understudied phenomenon observed in severe inflammation. EM signatures were characterized by fewer mature myeloid cells in the periphery and decreased expression of HLA-DR and CD86 on antigen-presenting cells. Interleukin 27 (IL-27), a cytokine known to drive hematopoietic stem cells toward EM, was increased in MIS-C, and correlated with immature cell signatures in MIS-C. Upon recovery, EM signatures decreased and IL-27 plasma levels returned to normal levels. Despite profound lymphopenia, we report a lack of cfDNA released by adaptive immune cells and increased CCR7 expression on T cells indicative of egress out of peripheral blood. CONCLUSIONS: Immune cell signatures of EM combined with elevated innate immune cell-derived cfDNA levels distinguish MIS-C from SAC in children and provide mechanistic insight into dysregulated immunity contributing toward MIS-C, offering potential diagnostic and therapeutic targets.


Subject(s)
COVID-19 , Myelopoiesis , Systemic Inflammatory Response Syndrome , Humans , COVID-19/diagnosis , COVID-19/immunology , COVID-19/complications , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/immunology , Child , Female , Male , Child, Preschool , SARS-CoV-2/immunology , Cytokines/blood , Adolescent , Infant , Immunity, Innate , Flow Cytometry
7.
medRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405967

ABSTRACT

The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRß) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRß and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.

8.
Cell Rep Med ; 5(3): 101442, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38423018

ABSTRACT

Bivalent COVID vaccines containing mRNA for ancestral and Omicron BA.5 spike proteins do not induce stronger T cell responses to Omicron BA.5 spike proteins than monovalent vaccines that contain only ancestral spike mRNA. The reasons for this finding have not been elucidated. Here, we show that healthy donors (HDs) and people living with HIV (PLWH) on antiretroviral therapy mostly target T cell epitopes that are not affected by BA.5 mutations. We use the functional expansion of specific T cells (FEST) assay to determine the percentage of CD4+ T cells that cross-recognize both spike proteins and those that are monoreactive for each protein. We show a predominance of cross-reactive CD4+ T cells; less than 10% percent of spike-specific CD4+ T cell receptors were BA.5 monoreactive in most HDs and PLWH. Our data suggest that the current bivalent vaccines do not induce robust BA.5-monoreactive T cell responses.


Subject(s)
COVID-19 , mRNA Vaccines , Humans , T-Lymphocytes , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , RNA, Messenger/genetics , CD4-Positive T-Lymphocytes
9.
Res Sq ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014049

ABSTRACT

Critically ill people with COVID-19 have greater antibody titers than those with mild to moderate illness, but their association with recovery or death from COVID-19 has not been characterized. In 178 COVID-19 patients, 73 non-hospitalized and 105 hospitalized patients, mucosal swabs and plasma samples were collected at hospital enrollment and up to 3 months post-enrollment (MPE) to measure virus RNA, cytokines/chemokines, binding antibodies, ACE2 binding inhibition, and Fc effector antibody responses against SARS-CoV-2. The association of demographic variables and >20 serological antibody measures with intubation or death due to COVID-19 was determined using machine learning algorithms. Predictive models revealed that IgG binding and ACE2 binding inhibition responses at 1 MPE were positively and C1q complement activity at enrollment was negatively associated with an increased probability of intubation or death from COVID-19 within 3 MPE. Serological antibody measures were more predictive than demographic variables of intubation or death among COVID-19 patients.

10.
Top Antivir Med ; 31(3): 493-509, 2023 May.
Article in English | MEDLINE | ID: mdl-37315513

ABSTRACT

Studies of acute and post-acute COVID-19 were presented at the 2023 Conference on Retroviruses and Opportunistic Infections (CROI). Early treatment with ensitrelvir, a novel protease inhibitor, hastened viral clearance and symptom resolution during coronavirus disease 2019 (COVID-19) and appeared to reduce the prevalence of long COVID symptoms. The development of novel agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including those with broader sarbecovirus activity such as anti-angiotensin-converting enzyme 2 monoclonal antibodies, is underway. A growing understanding of the pathophysiology of long COVID has provided several potential therapeutic targets for individuals experiencing this condition. Efforts to understand COVID-19 in people with HIV have led to novel insights into the biology and natural history of SARS-CoV-2 coinfection in this vulnerable subpopulation. These and other studies are summarized herein.


Subject(s)
COVID-19 , Retroviridae Infections , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Antiviral Agents/therapeutic use
11.
Curr Opin HIV AIDS ; 18(3): 126-134, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37144614

ABSTRACT

PURPOSE OF REVIEW: It is now recognized that SARS-CoV-2 infection can have a long-term impact on health. This review summarizes the current state of knowledge regarding Long COVID in people living with HIV (PLWH). RECENT FINDINGS: PLWH may be at elevated risk of experiencing Long COVID. Although the mechanisms contributing to Long COVID are incompletely understood, there are several demographic and clinical factors that might make PLWH vulnerable to developing Long COVID. SUMMARY: PLWH should be aware that new or worsening symptoms following SARS-CoV-2 infection might represent Long COVID. HIV providers should be aware of this clinical entity and be mindful that their patients recovering from SARS-CoV-2 infection may be at higher risk.


Subject(s)
COVID-19 , HIV Infections , Humans , Post-Acute COVID-19 Syndrome , COVID-19/complications , SARS-CoV-2 , HIV Infections/complications , Awareness
12.
Front Immunol ; 14: 1147549, 2023.
Article in English | MEDLINE | ID: mdl-37187756

ABSTRACT

Introduction: The incidence of long COVID is substantial, even in people with mild to moderate acute COVID-19. The role of early viral kinetics in the subsequent development of long COVID is largely unknown, especially in individuals who were not hospitalized for acute COVID-19. Methods: Seventy-three non-hospitalized adult participants were enrolled within approximately 48 hours of their first positive SARS-CoV-2 RT-PCR test, and mid-turbinate nasal and saliva samples were collected up to 9 times within the first 45 days after enrollment. Samples were assayed for SARS-CoV-2 using RT-PCR and additional SARS-CoV-2 test results were abstracted from the clinical record. Each participant indicated the presence and severity of 49 long COVID symptoms at 1-, 3-, 6-, 12-, and 18-months post-COVID-19 diagnosis. Time from acute COVID-19 illness onset to SARS-CoV-2 RNA clearance greater or less than 28 days was tested for association with the presence or absence of each of 49 long COVID symptoms at 90+ days from acute COVID-19 symptom onset. Results: Self-reported brain fog and muscle pain at 90+ days after acute COVID-19 onset were negatively associated with viral RNA clearance within 28 days of acute COVID-19 onset with adjustment for age, sex, BMI ≥ 25, and COVID vaccination status prior to COVID-19 (brain fog: aRR 0.46, 95% CI 0.22-0.95; muscle pain: aRR 0.28, 95% CI 0.08-0.94). Participants reporting higher severity brain fog or muscle pain at 90+ days after acute COVID-19 onset were less likely to have cleared SARS-CoV-2 RNA within 28 days. The acute viral RNA decay trajectories of participants who did and did not later go on to experience brain fog 90+ days after acute COVID-19 onset were distinct. Discussion: This work indicates that at least two long COVID symptoms - brain fog and muscle pain - at 90+ days from acute COVID-19 onset are specifically associated with prolonged time to clearance of SARS-CoV-2 RNA from the upper respiratory tract during acute COVID-19. This finding provides evidence that delayed immune clearance of SARS-CoV-2 antigen or greater amount or duration of viral antigen burden in the upper respiratory tract during acute COVID-19 are directly linked to long COVID. This work suggests that host-pathogen interactions during the first few weeks after acute COVID-19 onset have an impact on long COVID risk months later.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , RNA, Viral/genetics , COVID-19 Testing , Myalgia , Respiratory System , Brain
13.
JMIR Res Protoc ; 12: e47079, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37104709

ABSTRACT

BACKGROUND: Living with HIV is a risk factor for severe acute COVID-19, but it is unknown whether it is a risk factor for long COVID. OBJECTIVE: This study aims to characterize symptoms, sequelae, and cognition formally and prospectively 12 months following SARS-CoV-2 infection in people living with HIV compared with people without HIV. People with no history of SARS-CoV-2 infection, both with and without HIV, are enrolled as controls. The study also aims to identify blood-based biomarkers or patterns of immune dysregulation associated with long COVID. METHODS: This prospective observational cohort study enrolled participants into 1 of the following 4 study arms: people living with HIV who had SARS-CoV-2 infection for the first time <4 weeks before enrollment (HIV+COVID+ arm), people without HIV who had SARS-CoV-2 infection for the first time within 4 weeks of enrollment (HIV-COVID+ arm), people living with HIV who believed they never had SARS-CoV-2 infection (HIV+COVID- arm), and people without HIV who believed they never had SARS-CoV-2 infection (HIV-COVID- arm). At enrollment, participants in the COVID+ arms recalled their symptoms, mental health status, and quality of life in the month before having SARS-CoV-2 infection via a comprehensive survey administered by telephone or on the web. All participants completed the same comprehensive survey 1, 2, 4, 6, and 12 months after post-acute COVID-19 symptom onset or diagnosis, if asymptomatic, (COVID+ arms) or after enrollment (COVID- arms) on the web or by telephone. In total, 11 cognitive assessments were administered by telephone at 1 and 4 months after symptom onset (COVID+ arms) or after enrollment (COVID- arms). A mobile phlebotomist met the participants at a location of their choice for height and weight measurements, orthostatic vital signs, and a blood draw. Participants in the COVID+ arms donated blood 1 and 4 months after COVID-19, and participants in the COVID- arms donated blood once or none. Blood was then shipped overnight to the receiving study laboratory, processed, and stored. RESULTS: This project was funded in early 2021, and recruitment began in June 2021. Data analyses will be completed by summer 2023. As of February 2023, a total of 387 participants were enrolled in this study, with 345 participants having completed enrollment or baseline surveys together with at least one other completed study event. The 345 participants includes 76 (22%) HIV+COVID+, 121 (35.1%) HIV-COVID+, 78 (22.6%) HIV+COVID-, and 70 (20.3%) HIV-COVID- participants. CONCLUSIONS: This study will provide longitudinal data to characterize COVID-19 recovery over 12 months in people living with and without HIV. Additionally, this study will determine whether biomarkers or patterns of immune dsyregulation associate with decreased cognitive function or symptoms of long COVID. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/47079.

14.
J Immunol Methods ; 514: 113440, 2023 03.
Article in English | MEDLINE | ID: mdl-36773929

ABSTRACT

BACKGROUND: Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. OBJECTIVES: To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. METHODS: The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December 2019 (n = 555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n = 398) and used to optimize and validate MIA performance (total n = 953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (µg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. RESULTS: The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 µg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se] = 100.0%; 95% confidence interval [CI] = 94.8%, 100.0%) and 108/109 negatives (specificity [Sp] = 99.1%; 95% CI = 97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se = 98.8%; 95% CI = 93.3%, 100.0%] and 127/127 negatives (Sp = 100%; 95% CI = 97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n = 30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.83, S: ρ = 0.82; all p < 0.001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ = 0.68, RBD: ρ = 0.78, S: ρ = 0.79; all p < 0.001) and with plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.79, S: ρ = 0.76; p < 0.001) were similar. CONCLUSIONS: A salivary SARS-CoV-2 IgG MIA produced consistently high Se (> 98.8%) and Sp (> 99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.


Subject(s)
Blood Group Antigens , COVID-19 , Humans , Antibodies, Neutralizing , SARS-CoV-2 , COVID-19/diagnosis , Antibodies, Viral , Immunoglobulin G , COVID-19 Testing
15.
Open Forum Infect Dis ; 10(1): ofac677, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36655185

ABSTRACT

Antinucleocapsid (anti-N) immunoglobulin G antibody responses were lower in plasma and oral fluid after severe acute respiratory syndrome coronavirus 2 infection in vaccinated patients compared with patients infected before vaccination or infected without vaccination. This raises questions about the long-term use of anti-N antibodies as a marker for natural infection for surveillance.

16.
medRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711478

ABSTRACT

The incidence of long COVID is substantial, even in people who did not require hospitalization for acute COVID-19. The pathobiological mechanisms of long COVID and the role of early viral kinetics in its development are largely unknown. Seventy-three non-hospitalized adult participants were enrolled within approximately 48 hours of their first positive SARS-CoV-2 RT-PCR test, and mid-turbinate nasal and saliva samples were collected up to 9 times within the first 45 days after enrollment. Samples were assayed for SARS-CoV-2 using RT-PCR and additional test results were abstracted from the clinical record. Each participant indicated the presence and severity of 49 long- COVID symptoms at 1-, 3-, 6-, 12-, and 18-months post-COVID-19 diagnosis. Time from acute COVID-19 illness onset to SARS-CoV-2 RNA clearance greater or less than 28 days was tested for association with the presence or absence of each of 49 long COVID symptoms at 90+ days from acute COVID-19 symptom onset. Brain fog and muscle pain at 90+ days after acute COVID-19 onset were negatively associated with viral RNA clearance within 28 days of acute COVID-19 onset with adjustment for age, sex, BMI ≥ 25, and COVID vaccination status prior to COVID-19 (brain fog: aRR 0.46, 95% CI 0.22-0.95; muscle pain: aRR 0.28, 95% CI 0.08-0.94). This work indicates that at least two long COVID symptoms - brain fog and muscle pain - at 90+ days from acute COVID-19 onset are specifically associated with longer time to clearance of SARS-CoV-2 RNA from the upper respiratory tract.

17.
medRxiv ; 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35982674

ABSTRACT

Little data exist on long COVID outcomes beyond one year. In a cohort enrolled with mild-moderate acute COVID-19, a wide range of symptoms manifest at 6, 12, and 18 months. Endorsing over 3 symptoms associates with poorer quality of life in 5 domains: physical, social, fatigue, pain, and general health.

18.
AIDS Res Ther ; 19(1): 6, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148782

ABSTRACT

BACKGROUND: In hospitalized people with HIV (PWH) there is an increased risk of mortality from COVID-19 among hospitalized PWH as compared to HIV-negative individuals. Evidence suggests that tocilizumab-a humanized monoclonal interleukin (IL)-6 receptor inhibitor (IL-6ri) antibody-has a modest mortality benefit when combined with corticosteroids in select hospitalized COVID-19 patients who are severely ill. Data on clinical outcomes after tocilizumab use in PWH with severe COVID-19 are lacking. CASE PRESENTATION: We present a multinational case series of 18 PWH with COVID-19 who were treated with IL-6ri's during the period from April to June 2020. Four patients received tocilizumab, six sarilumab, and eight received an undocumented IL-6ri. Of the 18 patients in the series, 4 (22%) had CD4 counts < 200 cells/mm3; 14 (82%) had a suppressed HIV viral load. Eight patients (44%), all admitted to ICU, were treated for secondary infection; 5 had a confirmed organism. Of the four patients with CD4 counts < 200 cells/mm3, three were treated for secondary infection, with 2 confirmed organisms. Overall outcomes were poor-12 patients (67%) were admitted to the ICU, 11 (61%) required mechanical ventilation, and 7 (39%) died. CONCLUSIONS: In this case series of hospitalized PWH with COVID-19 and given IL-6ri prior to the common use of corticosteroids, there are reports of secondary or co-infection in severely ill patients. Comprehensive studies in PWH, particularly with CD4 counts < 200 cells, are warranted to assess infectious and other outcomes after IL-6ri use, particularly in the context of co-administered corticosteroids.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , Receptors, Interleukin-6/antagonists & inhibitors , HIV Infections/drug therapy , Hospitalization , Humans , SARS-CoV-2
19.
medRxiv ; 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36597525

ABSTRACT

Background: Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. Objectives: To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. Methods: The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December, 2019 (n=555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n=398) and used to optimize and validate MIA performance (total n=953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (µg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. Results: The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 µg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se]=100.0%; 95% confidence interval [CI]=94.8%, 100.0%) and 108/109 negatives (specificity [Sp]=99.1%; 95% CI=97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se=98.8%; 95% CI=93.3%, 100.0%] and 127/127 negatives (Sp=100%; 95% CI=97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n=30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ=0.67, RBD: ρ=0.76, S: ρ=0.82; all p <0.0001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ=0.68, RBD: ρ=0.78, S: ρ=0.79; all p <0.0001) and with plasma ELISA IgG (N: ρ=0.76, RBD: ρ=0.79, S: ρ=0.76; p <0.0001) were similar. Conclusions: A salivary SARS-CoV-2 IgG MIA produced consistently high Se (>98.8%) and Sp (>99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.

20.
Open Forum Infect Dis ; 8(4): ofab121, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34796248

ABSTRACT

In an outpatient cohort in Maryland, clustering of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity within households was high, with 76% of 74 households reporting at least 1 other symptomatic person and 66% reporting another person who tested SARS-CoV-2 positive. SARS-CoV-2 positivity among household members was associated with larger household size and bedroom sharing.

SELECTION OF CITATIONS
SEARCH DETAIL