Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Am J Hum Genet ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096911

ABSTRACT

Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.

2.
BJC Rep ; 2(1): 53, 2024.
Article in English | MEDLINE | ID: mdl-39072245

ABSTRACT

Breast cancer risks in older BRCA2 pathogenic variant carriers are understudied. Recent studies show a marked decline in the relative risk at older ages. We used data from two large studies to update the breast cancer risks in the BOADICEA model for BRCA2 carriers 60 years and older.

3.
Cancers (Basel) ; 16(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893236

ABSTRACT

Risk-stratified breast screening has been proposed as a strategy to overcome the limitations of age-based screening. A prospective cohort study was undertaken within the PERSPECTIVE I&I project, which will generate the first Canadian evidence on multifactorial breast cancer risk assessment in the population setting to inform the implementation of risk-stratified screening. Recruited females aged 40-69 unaffected by breast cancer, with a previous mammogram, underwent multifactorial breast cancer risk assessment. The adoption of multifactorial risk assessment, the effectiveness of methods for collecting risk factor information and the costs of risk assessment were examined. Associations between participant characteristics and study sites, as well as data collection methods, were assessed using logistic regression; all p-values are two-sided. Of the 4246 participants recruited, 88.4% completed a risk assessment, with 79.8%, 15.7% and 4.4% estimated at average, higher than average and high risk, respectively. The total per-participant cost for risk assessment was CAD 315. Participants who chose to provide risk factor information on paper/telephone (27.2%) vs. online were more likely to be older (p = 0.021), not born in Canada (p = 0.043), visible minorities (p = 0.01) and have a lower attained education (p < 0.0001) and perceived fair/poor health (p < 0.001). The 34.4% of participants requiring risk factor verification for missing/unusual values were more likely to be visible minorities (p = 0.009) and have a lower attained education (p ≤ 0.006). This study demonstrates the feasibility of risk assessment for risk-stratified screening at the population level. Implementation should incorporate an equity lens to ensure cancer-screening disparities are not widened.

4.
Br J Cancer ; 130(12): 2027-2036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834743

ABSTRACT

BACKGROUND: The CanRisk tool, which operationalises the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) is used by Clinical Geneticists, Genetic Counsellors, Breast Oncologists, Surgeons and Family History Nurses for breast cancer risk assessments both nationally and internationally. There are currently no guidelines with respect to the day-to-day clinical application of CanRisk and differing inputs to the model can result in different recommendations for practice. METHODS: To address this gap, the UK Cancer Genetics Group in collaboration with the Association of Breast Surgery and the CanGene-CanVar programme held a workshop on 16th of May 2023, with the aim of establishing best practice guidelines. RESULTS: Using a pre-workshop survey followed by structured discussion and in-meeting polling, we achieved consensus for UK best practice in use of CanRisk in making recommendations for breast cancer surveillance, eligibility for genetic testing and the input of available information to undertake an individualised risk assessment. CONCLUSIONS: Whilst consensus recommendations were achieved, the meeting highlighted some of the barriers limiting the use of CanRisk in clinical practice and identified areas that require further work and collaboration with relevant national bodies and policy makers to incorporate wider use of CanRisk into routine breast cancer risk assessments.


Subject(s)
Breast Neoplasms , Genetic Testing , Humans , Female , Breast Neoplasms/genetics , Risk Assessment/methods , Genetic Testing/standards , United Kingdom , Genetic Predisposition to Disease , Consensus , Algorithms , Genetic Counseling
5.
J Med Genet ; 61(8): 803-809, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38834293

ABSTRACT

BACKGROUND: No validation has been conducted for the BOADICEA multifactorial breast cancer risk prediction model specifically in BRCA1/2 pathogenic variant (PV) carriers to date. Here, we evaluated the performance of BOADICEA in predicting 5-year breast cancer risks in a prospective cohort of BRCA1/2 PV carriers ascertained through clinical genetic centres. METHODS: We evaluated the model calibration and discriminatory ability in the prospective TRANsIBCCS cohort study comprising 1614 BRCA1 and 1365 BRCA2 PV carriers (209 incident cases). Study participants had lifestyle, reproductive, hormonal, anthropometric risk factor information, a polygenic risk score based on 313 SNPs and family history information. RESULTS: The full multifactorial model considering family history together with all other risk factors was well calibrated overall (E/O=1.07, 95% CI: 0.92 to 1.24) and in quintiles of predicted risk. Discrimination was maximised when all risk factors were considered (Harrell's C-index=0.70, 95% CI: 0.67 to 0.74; area under the curve=0.79, 95% CI: 0.76 to 0.82). The model performance was similar when evaluated separately in BRCA1 or BRCA2 PV carriers. The full model identified 5.8%, 12.9% and 24.0% of BRCA1/2 PV carriers with 5-year breast cancer risks of <1.65%, <3% and <5%, respectively, risk thresholds commonly used for different management and risk-reduction options. CONCLUSION: BOADICEA may be used to aid personalised cancer risk management and decision-making for BRCA1 and BRCA2 PV carriers. It is implemented in the free-access CanRisk tool (https://www.canrisk.org/).


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Genetic Predisposition to Disease , Heterozygote , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Middle Aged , Adult , Prospective Studies , Risk Factors , Risk Assessment , Polymorphism, Single Nucleotide/genetics
6.
Lancet Reg Health Eur ; 40: 100903, 2024 May.
Article in English | MEDLINE | ID: mdl-38745989

ABSTRACT

Background: Second primary cancers (SPCs) after breast cancer (BC) present an increasing public health burden, with little existing research on socio-demographic, tumour, and treatment effects. We addressed this in the largest BC survivor cohort to date, using a novel linkage of National Disease Registration Service datasets. Methods: The cohort included 581,403 female and 3562 male BC survivors diagnosed between 1995 and 2019. We estimated standardized incidence ratios (SIRs) for combined and site-specific SPCs using incidences for England, overall and by age at BC and socioeconomic status. We estimated incidences and Kaplan-Meier cumulative risks stratified by age at BC, and assessed risk variation by socio-demographic, tumour, and treatment characteristics using Cox regression. Findings: Both genders were at elevated contralateral breast (SIR: 2.02 (95% CI: 1.99-2.06) females; 55.4 (35.5-82.4) males) and non-breast (1.10 (1.09-1.11) females, 1.10 (1.00-1.20) males) SPC risks. Non-breast SPC risks were higher for females younger at BC diagnosis (SIR: 1.34 (1.31-1.38) <50 y, 1.07 (1.06-1.09) ≥50 y) and more socioeconomically deprived (SIR: 1.00 (0.98-1.02) least deprived quintile, 1.34 (1.30-1.37) most). Interpretation: Enhanced SPC surveillance may benefit BC survivors, although specific recommendations require more detailed multifactorial risk and cost-benefit analyses. The associations between deprivation and SPC risks could provide clinical management insights. Funding: CRUK Catalyst Award CanGene-CanVar (C61296/A27223). Cancer Research UK grant: PPRPGM-Nov 20∖100,002. This work was supported by core funding from the NIHR Cambridge Biomedical Research Centre (NIHR203312)]. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

7.
Br J Gen Pract ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38724186

ABSTRACT

BACKGROUND: Menopausal hormone therapy (MHT) can alleviate menopausal symptoms but has been associated with an increased risk of breast cancer. MHT prescription should be preceded by individualised risk/benefit evaluation; however, data outlining the impact of family history alongside different MHT therapeutic approaches are lacking. AIM: To quantify the risks associated with MHT use in women with varying breast cancer family histories of developing and dying from breast cancer. DESIGN AND SETTING: An epidemiological modelling study for women in England using the BOADICEA breast cancer prediction model and data relating to MHT use and breast cancer risk taken from research by the Collaborative Group on Hormonal Factors in Breast Cancer. METHOD: The risk of developing and dying from breast cancer between the ages of 50 and 80 years was modelled in women with four different breast cancer family history profiles: 'average', 'modest', 'intermediate', and 'strong' by using 1) background risks of breast cancer by age and family history, 2) relative risks for breast cancer associated with MHT use, and 3) 10-year breast cancer-specific net mortality rates. This study modelled use of combined oestrogen-progestogen MHT (cyclical or continuous) and oestrogen-only MHT. RESULTS: For a woman of 'average' family history taking no MHT, the cumulative breast cancer risk (age 50-80 years) is 9.8%, and the risk of dying from the breast cancer is 1.7%. In this model, 5 years' exposure to combined-cyclical MHT (age 50-55 years) was calculated to increase these risks to 11.0% and 1.8%, respectively. For a woman with a 'strong' family history taking no MHT, the cumulative breast cancer risk is 19.6% (age 50-80 years), and the risk of dying from the breast cancer is 3.2%. With 5 years' exposure to MHT (age 50-55 years), this model showed that these risks increase to 22.4% and 3.5%, respectively. CONCLUSION: In this model, both family history and MHT are associated with increased risk of breast cancer. Estimates of the risks of breast cancer associated with MHT for women with different family histories can be used to support decision making around MHT prescription for women experiencing menopausal symptoms.

8.
Breast Cancer Res Treat ; 206(2): 295-305, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38653906

ABSTRACT

PURPOSE: Mammographic density phenotypes, adjusted for age and body mass index (BMI), are strong predictors of breast cancer risk. BMI is associated with mammographic density measures, but the role of circulating sex hormone concentrations is less clear. We investigated the relationship between BMI, circulating sex hormone concentrations, and mammographic density phenotypes using Mendelian randomization (MR). METHODS: We applied two-sample MR approaches to assess the association between genetically predicted circulating concentrations of sex hormones [estradiol, testosterone, sex hormone-binding globulin (SHBG)], BMI, and mammographic density phenotypes (dense and non-dense area). We created instrumental variables from large European ancestry-based genome-wide association studies and applied estimates to mammographic density phenotypes in up to 14,000 women of European ancestry. We performed analyses overall and by menopausal status. RESULTS: Genetically predicted BMI was positively associated with non-dense area (IVW: ß = 1.79; 95% CI = 1.58, 2.00; p = 9.57 × 10-63) and inversely associated with dense area (IVW: ß = - 0.37; 95% CI = - 0.51,- 0.23; p = 4.7 × 10-7). We observed weak evidence for an association of circulating sex hormone concentrations with mammographic density phenotypes, specifically inverse associations between genetically predicted testosterone concentration and dense area (ß = - 0.22; 95% CI = - 0.38, - 0.053; p = 0.009) and between genetically predicted estradiol concentration and non-dense area (ß = - 3.32; 95% CI = - 5.83, - 0.82; p = 0.009), although results were not consistent across a range of MR approaches. CONCLUSION: Our findings support a positive causal association between BMI and mammographic non-dense area and an inverse association between BMI and dense area. Evidence was weaker and inconsistent for a causal effect of circulating sex hormone concentrations on mammographic density phenotypes. Based on our findings, associations between circulating sex hormone concentrations and mammographic density phenotypes are weak at best.


Subject(s)
Body Mass Index , Breast Density , Breast Neoplasms , Genome-Wide Association Study , Gonadal Steroid Hormones , Mendelian Randomization Analysis , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/diagnostic imaging , Gonadal Steroid Hormones/blood , Sex Hormone-Binding Globulin/analysis , Sex Hormone-Binding Globulin/metabolism , Sex Hormone-Binding Globulin/genetics , Middle Aged , Polymorphism, Single Nucleotide , Mammography , Estradiol/blood , Testosterone/blood , Phenotype
9.
Eur Urol Oncol ; 7(2): 248-257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458890

ABSTRACT

BACKGROUND: Prostate cancer (PrCa) is a substantial cause of mortality among men globally. Rare germline mutations in BRCA2 have been validated robustly as increasing risk of aggressive forms with a poorer prognosis; however, evidence remains less definitive for other genes. OBJECTIVE: To detect genes associated with PrCa aggressiveness, through a pooled analysis of rare variant sequencing data from six previously reported studies in the UK Genetic Prostate Cancer Study (UKGPCS). DESIGN, SETTING, AND PARTICIPANTS: We accumulated a cohort of 6805 PrCa cases, in which a set of ten candidate genes had been sequenced in all samples. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We examined the association between rare putative loss of function (pLOF) variants in each gene and aggressive classification (defined as any of death from PrCa, metastatic disease, stage T4, or both stage T3 and Gleason score ≥8). Secondary analyses examined staging phenotypes individually. Cox proportional hazards modelling and Kaplan-Meier survival analyses were used to further examine the relationship between mutation status and survival. RESULTS AND LIMITATIONS: We observed associations between PrCa aggressiveness and pLOF mutations in ATM, BRCA2, MSH2, and NBN (odds ratio = 2.67-18.9). These four genes and MLH1 were additionally associated with one or more secondary analysis phenotype. Carriers of germline mutations in these genes experienced shorter PrCa-specific survival (hazard ratio = 2.15, 95% confidence interval 1.79-2.59, p = 4 × 10-16) than noncarriers. CONCLUSIONS: This study provides further support that rare pLOF variants in specific genes are likely to increase aggressive PrCa risk and may help define the panel of informative genes for screening and treatment considerations. PATIENT SUMMARY: By combining data from several previous studies, we have been able to enhance knowledge regarding genes in which inherited mutations would be expected to increase the risk of more aggressive PrCa. This may, in the future, aid in the identification of men at an elevated risk of dying from PrCa.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Prostate/pathology , Genes, BRCA2 , Mutation
10.
BMC Med Res Methodol ; 24(1): 71, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509467

ABSTRACT

BACKGROUND: Patients with multiple conditions present a growing challenge for healthcare provision. Measures of multimorbidity may support clinical management, healthcare resource allocation and accounting for the health of participants in purpose-designed cohorts. The recently developed Cambridge Multimorbidity scores (CMS) have the potential to achieve these aims using primary care records, however, they have not yet been validated outside of their development cohort. METHODS: The CMS, developed in the Clinical Research Practice Dataset (CPRD), were validated in UK Biobank participants whose data is not available in CPRD (the cohort used for CMS development) with available primary care records (n = 111,898). This required mapping of the 37 pre-existing conditions used in the CMS to the coding frameworks used by UK Biobank data providers. We used calibration plots and measures of discrimination to validate the CMS for two of the three outcomes used in the development study (death and primary care consultation rate) and explored variation by age and sex. We also examined the predictive ability of the CMS for the outcome of cancer diagnosis. The results were compared to an unweighted count score of the 37 pre-existing conditions. RESULTS: For all three outcomes considered, the CMS were poorly calibrated in UK Biobank. We observed a similar discriminative ability for the outcome of primary care consultation rate to that reported in the development study (C-index: 0.67 (95%CI:0.66-0.68) for both, 5-year follow-up); however, we report lower discrimination for the outcome of death than the development study (0.69 (0.68-0.70) and 0.89 (0.88-0.90) respectively). Discrimination for cancer diagnosis was adequate (0.64 (0.63-0.65)). The CMS performs favourably to the unweighted count score for death, but not for the outcomes of primary care consultation rate or cancer diagnosis. CONCLUSIONS: In the UK Biobank, CMS discriminates reasonably for the outcomes of death, primary care consultation rate and cancer diagnosis and may be a valuable resource for clinicians, public health professionals and data scientists. However, recalibration will be required to make accurate predictions when cohort composition and risk levels differ substantially from the development cohort. The generated resources (including codelists for the conditions and code for CMS implementation in UK Biobank) are available online.


Subject(s)
Biological Specimen Banks , Neoplasms , Humans , Multimorbidity , UK Biobank , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/therapy , United Kingdom
11.
Lancet Reg Health West Pac ; 44: 101017, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38333895

ABSTRACT

Background: Clinical management of Asian BRCA1 and BRCA2 pathogenic variants (PV) carriers remains challenging due to imprecise age-specific breast (BC) and ovarian cancer (OC) risks estimates. We aimed to refine these estimates using six multi-ethnic studies in Asia. Methods: Data were collected on 271 BRCA1 and 301 BRCA2 families from Malaysia and Singapore, ascertained through population/hospital-based case-series (88%) and genetic clinics (12%). Age-specific cancer risks were estimated using a modified segregation analysis method, adjusted for ascertainment. Findings: BC and OC relative risks (RRs) varied across age groups for both BRCA1 and BRCA2. The age-specific RR estimates were similar across ethnicities and country of residence. For BRCA1 carriers of Malay, Indian and Chinese ancestry born between 1950 and 1959 in Malaysia, the cumulative risk (95% CI) of BC by age 80 was 40% (36%-44%), 49% (44%-53%) and 55% (51%-60%), respectively. The corresponding estimates for BRCA2 were 29% (26-32%), 36% (33%-40%) and 42% (38%-45%). The corresponding cumulative BC risks for Singapore residents from the same birth cohort, where the underlying population cancer incidences are higher compared to Malaysia, were higher, varying by ancestry group between 57 and 61% for BRCA1, and between 43 and 47% for BRCA2 carriers. The cumulative risk of OC by age 80 was 31% (27-36%) for BRCA1 and 12% (10%-15%) for BRCA2 carriers in Malaysia born between 1950 and 1959; and 42% (34-50%) for BRCA1 and 20% (14-27%) for BRCA2 carriers of the same birth cohort in Singapore. There was evidence of increased BC and OC risks for women from >1960 birth cohorts (p-value = 3.6 × 10-5 for BRCA1 and 0.018 for BRCA2). Interpretation: The absolute age-specific cancer risks of Asian carriers vary depending on the underlying population-specific cancer incidences, and hence should be customised to allow for more accurate cancer risk management. Funding: Wellcome Trust [grant no: v203477/Z/16/Z]; CRUK (PPRPGM-Nov20∖100002).

12.
Cancer ; 130(9): 1590-1599, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38174903

ABSTRACT

BACKGROUND: Genetic, lifestyle, reproductive, and anthropometric factors are associated with the risk of developing breast cancer. However, it is not yet known whether polygenic risk score (PRS) and absolute risk based on a combination of risk factors are associated with the risk of progression of breast cancer. This study aims to estimate the distribution of sojourn time (pre-clinical screen-detectable period) and mammographic sensitivity by absolute breast cancer risk derived from polygenic profile and the other risk factors. METHODS: The authors used data from a population-based case-control study. Six categories of 10-year absolute risk based on different combinations of risk factors were derived using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm. Women were classified into low, medium, and high-risk groups. The authors constructed a continuous-time multistate model. To calculate the sojourn time, they simulated the trajectories of subjects through the disease states. RESULTS: There was little difference in sojourn time with a large overlap in the 95% confidence interval (CI) between the risk groups across the six risk categories and PRS studied. However, the age of entry into the screen-detectable state varied by risk category, with the mean age of entry of 53.4 years (95% CI, 52.2-54.1) and 57.0 years (95% CI, 55.1-57.7) in the high-risk and low-risk women, respectively. CONCLUSION: In risk-stratified breast screening, the age at the start of screening, but not necessarily the frequency of screening, should be tailored to a woman's risk level. The optimal risk-stratified screening strategy that would improve the benefit-to-harm balance and the cost-effectiveness of the screening programs needs to be studied.


Subject(s)
Breast Neoplasms , Female , Humans , Middle Aged , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Genetic Risk Score , Case-Control Studies , Age of Onset , Risk Factors , Risk Assessment , Genetic Predisposition to Disease
13.
J Med Genet ; 61(4): 305-312, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38154813

ABSTRACT

BACKGROUND: National and international amalgamation of genomic data offers opportunity for research and audit, including analyses enabling improved classification of variants of uncertain significance. Review of individual-level data from National Health Service (NHS) testing of cancer susceptibility genes (2002-2023) submitted to the National Disease Registration Service revealed heterogeneity across participating laboratories regarding (1) the structure, quality and completeness of submitted data, and (2) the ease with which that data could be assembled locally for submission. METHODS: In May 2023, we undertook a closed online survey of 51 clinical scientists who provided consensus responses representing all 17 of 17 NHS molecular genetic laboratories in England and Wales which undertake NHS diagnostic analyses of cancer susceptibility genes. The survey included 18 questions relating to 'next-generation sequencing workflow' (11), 'variant classification' (3) and 'phenotypical context' (4). RESULTS: Widely differing processes were reported for transfer of variant data into their local LIMS (Laboratory Information Management System), for the formatting in which the variants are stored in the LIMS and which classes of variants are retained in the local LIMS. Differing local provisions and workflow for variant classifications were also reported, including the resources provided and the mechanisms by which classifications are stored. CONCLUSION: The survey responses illustrate heterogeneous laboratory workflow for preparation of genomic variant data from local LIMS for centralised submission. Workflow is often labour-intensive and inefficient, involving multiple manual steps which introduce opportunities for error. These survey findings and adoption of the concomitant recommendations may support improvement in laboratory dataflows, better facilitating submission of data for central amalgamation.


Subject(s)
Laboratories , Neoplasms , Humans , Workflow , State Medicine , Genomics , United Kingdom
14.
PLOS Digit Health ; 2(12): e0000383, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100737

ABSTRACT

Early diagnosis of cancer relies on accurate assessment of cancer risk in patients presenting with symptoms, when screening is not appropriate. But recorded symptoms in cancer patients pre-diagnosis may vary between different sources of electronic health records (EHRs), either genuinely or due to differential completeness of symptom recording. To assess possible differences, we analysed primary care EHRs in the year pre-diagnosis of cancer in UK Biobank and Clinical Practice Research Datalink (CPRD) populations linked to cancer registry data. We developed harmonised phenotypes in Read v2 and CTV3 coding systems for 21 symptoms and eight blood tests relevant to cancer diagnosis. Among 22,601 CPRD and 11,594 UK Biobank cancer patients, 54% and 36%, respectively, had at least one consultation for possible cancer symptoms recorded in the year before their diagnosis. Adjusted comparisons between datasets were made using multivariable Poisson models, comparing rates of symptoms/tests in CPRD against expected rates if cancer site-age-sex-deprivation associations were the same as in UK Biobank. UK Biobank cancer patients compared with those in CPRD had lower rates of consultation for possible cancer symptoms [RR: 0.61 (0.59-0.63)], and lower rates for any primary care consultation [RR: 0.86 (95%CI 0.85-0.87)]. Differences were larger for 'non-alarm' symptoms [RR: 0.54 (0.52-0.56)], and smaller for 'alarm' symptoms [RR: 0.80 (0.76-0.84)] and blood tests [RR: 0.93 (0.90-0.95)]. In the CPRD cohort, approximately representative of the UK population, half of cancer patients had recorded symptoms in the year before diagnosis. The frequency of non-specific presenting symptoms recorded in the year pre-diagnosis of cancer was substantially lower among UK Biobank participants. The degree to which results based on highly selected biobank cohorts are generalisable needs to be examined in disease-specific contexts.

SELECTION OF CITATIONS
SEARCH DETAIL