Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(3): 113834, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431842

ABSTRACT

Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.


Subject(s)
Autoreceptors , Dopamine , Mice , Animals , gamma-Aminobutyric Acid/pharmacology , Axons/metabolism , Corpus Striatum/metabolism , Receptors, GABA-A/metabolism , Mice, Knockout , Homeostasis
2.
Brain Struct Funct ; 229(2): 323-348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38170266

ABSTRACT

Anorexia nervosa (AN) is a mental illness with high rates of mortality and relapse, and no approved pharmacotherapy. Using the activity-based anorexia (ABA) model of AN, we previously showed that a single sub-anesthetic intraperitoneal injection of ketamine (30 mg/kg-KET, but not 3 mg/kg-KET), has an immediate and long-lasting effect of reducing anorexia-like behavior among adolescent female mice. We also showed previously that excitatory outflow from medial prefrontal cortex (mPFC) engages hunger-evoked hyperactivity, leading to the ABA condition of severe weight loss. Ketamine is known to target GluN2B-containing NMDARs (NR2B). Might synaptic plasticity involving NR2B in mPFC contribute to ketamine's ameliorative effects? We addressed this question through electron microscopic immunocytochemical quantification of GluN2B at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (IN) in mPFC layer 1 of animals that underwent recovery from a second ABA induction (ABA2), 22 days after ketamine injection during the first ABA induction. The 30 mg/kg-KET evoked synaptic plasticity that differed for PN and IN, with changes revolving the cytoplasmic reserve pool of NR2B more than the postsynaptic membrane pool. Those individuals that suppressed hunger-evoked wheel running the most and increased food consumption during recovery from ABA2 the most showed the greatest increase of NR2B at PN and IN excitatory synapses. We hypothesize that 30 mg/kg-KET promotes long-lasting changes in the reserve cytoplasmic pool of NR2B that enables activity-dependent rapid strengthening of mPFC circuits underlying the more adaptive behavior of suppressed running and enhanced food consumption, in turn supporting better weight restoration.


Subject(s)
Ketamine , Mice , Animals , Female , Ketamine/pharmacology , Anorexia/drug therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Motor Activity/physiology , Pyramidal Cells/metabolism , Interneurons/metabolism , Prefrontal Cortex/metabolism
3.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38105956

ABSTRACT

Gonadal hormones act throughout the brain 1 , and nearly all neuropsychiatric disorders vary in symptom severity with hormonal fluctuations over the reproductive cycle, gestation, and perimenopause 2-4 . Yet the mechanisms by which hormones influence mental and cognitive processes are unclear. Exogenous estrogenic hormones modulate dopamine signaling in the nucleus accumbens core (NAcc) 5,6 , which instantiates reward prediction errors (RPEs) for reinforcement learning 7-16 . Here we show that endogenous estrogenic hormones enhance RPEs and sensitivity to previous rewards by regulating expression of dopamine reuptake proteins in the NAcc. We trained rats to perform a temporal wagering task with different reward states; rats adjusted how quickly they initiated trials across states, balancing effort against expected rewards. Dopamine release in the NAcc reflected RPEs that predicted and causally in-fluenced subsequent initiation times. When fertile, females more quickly adjusted their initiation times to match reward states due to enhanced dopaminergic RPEs in the NAcc. Proteomics revealed reduced expression of dopamine transporters in fertile stages of the reproductive cycle. Finally, genetic suppression of midbrain estrogen receptors eliminated hormonal modulation of behavior. Estrogenic hormones therefore control the rate of reinforcement learning by regulating RPEs via dopamine reuptake, providing a mechanism by which hormones influence neural dynamics for motivation and learning.

SELECTION OF CITATIONS
SEARCH DETAIL