Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1124959, 2023.
Article in English | MEDLINE | ID: mdl-37063176

ABSTRACT

The most abundant phenolic compound in Solanaceous plants is chlorogenic acid (CGA), which possesses protective properties such as antimicrobial and antioxidant activities. These properties are particularly relevant when plants are under adverse conditions, such as pathogen attack, excess light, or extreme temperatures that cause oxidative stress. Additionally, CGA has been shown to absorb UV-B light. In tomato and potato, CGA is mainly produced through the HQT pathway mediated by the enzyme hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase. However, the absence of natural or induced mutants of this gene has made it unclear whether other pathways contribute to CGA production and accumulation. To address this question, we used CRISPR technology to generate multiple knock-out mutant lines in the tomato HQT gene. The resulting slhqt plants did not accumulate CGA or other caffeoylquinic acids (CQAs) in various parts of the plant, indicating that CQA biosynthesis depends almost entirely on the HQT pathway in tomato and, likely, other Solanaceous crops. We also found that the lack of CGA in slhqt plants led to higher levels of hydroxycinnamoyl-glucose and flavonoids compared to wild-type plants. Gene expression analysis revealed that this metabolic reorganization was partly due to flux redirection, but also involved modulation of important transcription factor genes that regulate secondary metabolism and sense environmental conditions. Finally, we investigated the physiological role of CGA in tomato and found that it accumulates in the upper epidermis where it acts as a protector against UV-B irradiation.

2.
Plants (Basel) ; 11(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35956487

ABSTRACT

The WIP family of transcription factors comprises the A1d subgroup of C2H2 zinc finger proteins. This family has six members in Arabidopsis thaliana and most of the known functions have been described by analyzing single knockout mutants. However, it has been shown that WIP2 and its closest paralogs WIP4 and WIP5 have a redundant and essential function in root meristems. It is likely that these and other WIP genes perform more, still unknown, functions. To obtain hints about these other functions, the expression of the six WIP genes was explored. Moreover, phenotypic ana-lyses of overexpressors and wip mutants revealed functions in modulating organ and cell size, stomatal density, and vasculature development.

3.
Plants (Basel) ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917946

ABSTRACT

Choices of blue food colourants are extremely limited, with only two options in the USA, synthetic blue no. 1 and no. 2, and a third available in Europe, patent blue V. The food industry is investing heavily in finding naturally derived replacements, with limited success to date. Here, we review the complex and multifold mechanisms whereby blue pigmentation by anthocyanins is achieved in nature. Our aim is to explain how structure determines the functionality of anthocyanin pigments, particularly their colour and their stability. Where possible, we describe the impact of progressive decorations on colour and stability, drawn from extensive but diverse physico-chemical studies. We also consider briefly how this understanding could be harnessed to develop blue food colourants on the basis of the understanding of how anthocyanins create blues in nature.

4.
Proc Natl Acad Sci U S A ; 116(52): 27105-27114, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31806756

ABSTRACT

Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of l-arabinose linked to 2 d-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining d-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked d-glucose molecule to l-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked d-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.

5.
J Exp Bot ; 69(22): 5444-5459, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30124996

ABSTRACT

Glycosylation contributes to the diversity and stability of anthocyanins in plants. The process is catalysed by various glucosyltransferases using different anthocyanidin aglycones and glycosyl donors. In this study, we found that an anthocyanidin 3-O-glucoside-2″-O-glucosyltransferase (3GGT) from purple sweet potato (Ipomoea batatas) catalyses the conversion of anthocyanidin 3-O-glucoside into anthocyanidin 3-O-sophoroside, which is functionally different from the 3GGT ortholog of Arabidopsis. Phylogenetic analysis indicated regioselectivity of 3GGT using uridine-5'-diphosphate (UDP)-xylose or UDP-glucose as the glycosyl is divergent between Convolvulaceae and Arabidopsis. Homology-based protein modeling and site-directed mutagenesis of Ib3GGT and At3GGT suggested that the Thr-138 of Ib3GGT is a key amino acid residue for UDP-glucose recognition and that it plays a major role in sugar-donor selectivity. Wild-type and ugt79b1 mutants (defective in UDP carbohydrate-dependent glycosyltransferases, UGTs) of Arabidopsis plants overexpressing Ib3GGT produced the new component cyanidin 3-O-sophoroside. Moreover, Ib3GGT expression was associated with anthocyanin accumulation in different tissues during I. batatas plant development and was regulated by the transcription factor IbMYB1. Localization assays for Ib3GGT showed that glycosyl extension occurs in the cytosol and not in the endoplasmic reticulum. This study therefore reveals the function of Ib3GGT in glycosyl extension of anthocyanins and demonstrates that Thr-138 is the key amino acid residue for UDP-glucose recognition.


Subject(s)
Anthocyanins/metabolism , Glucose/metabolism , Glycosyltransferases/genetics , Ipomoea batatas/genetics , Plant Proteins/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Catalysis , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Ipomoea batatas/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sequence Alignment
6.
Metab Eng ; 48: 218-232, 2018 07.
Article in English | MEDLINE | ID: mdl-29890220

ABSTRACT

Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins.


Subject(s)
Anthocyanins/biosynthesis , Arabidopsis , Bioreactors , Cell Culture Techniques/methods , Nicotiana , Plant Cells/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Nicotiana/cytology , Nicotiana/metabolism
7.
Plant Cell Environ ; 41(5): 1038-1051, 2018 05.
Article in English | MEDLINE | ID: mdl-28386931

ABSTRACT

Wild potato species are useful sources of allelic diversity and loci lacking in the cultivated potato. In these species, the presence of anthocyanins in leaves has been associated with a greater tolerance to cold stress. However, the molecular mechanisms that allow potatoes to withstand cold exposure remain unclear. Here, we show that the expression of AN2, a MYB transcription factor, is induced by low temperatures in wild, cold-tolerant Solanum commersonii, and not in susceptible Solanum tuberosum varieties. We found that AN2 is a paralog of the potato anthocyanin regulator AN1, showing similar interaction ability with basic helix-loop-helix (bHLH) co-partners. Their sequence diversity resulted in a different capacity to promote accumulation of phenolics when tested in tobacco. Indeed, functional studies demonstrated that AN2 is less able to induce anthocyanins than AN1, but nevertheless it has a strong ability to induce accumulation of hydroxycinnamic acid derivatives. We propose that the duplication of R2R3 MYB genes resulted in subsequent subfunctionalization, where AN1 specialized in anthocyanin production and AN2 conserved the ability to respond to cold stress, inducing mainly the synthesis of hydroxycinnamic acid derivatives. These results contribute to understanding the evolutionary significance of gene duplication on phenolic compound regulation.


Subject(s)
Anthocyanins/metabolism , Plant Proteins/metabolism , Solanum/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cold Temperature , Coumaric Acids/metabolism , Genes, Duplicate , Osmotic Pressure , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plants, Genetically Modified , Solanum/physiology , Stress, Physiological , Nicotiana/genetics , Nicotiana/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Curr Biol ; 27(7): 945-957, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28318977

ABSTRACT

Anthocyanins are some of the most widely occurring secondary metabolites in plants, responsible for the orange, red, purple, and blue colors of flowers and fruits and red colors of autumn leaves. These pigments accumulate in vacuoles, and their color is influenced by chemical decorations, vacuolar pH, the presence of copigments, and metal ions. Anthocyanins are usually soluble in the vacuole, but in some plants, they accumulate as discrete sub-vacuolar structures. Studies have distinguished intensely colored intra-vacuolar bodies observed in the cells of highly colored tissues, termed anthocyanic vacuolar inclusions (AVIs), from more globular, membrane-bound anthocyanoplasts. We describe a system in tobacco that adds additional decorations to the basic anthocyanin, cyanidin 3-O-rutinoside, normally formed by this species. Using this system, we have been able to establish which decorations underpin the formation of AVIs, the conditions promoting AVI formation, and, consequently, the mechanism by which they form.


Subject(s)
Anthocyanins/genetics , Nicotiana/physiology , Pigmentation/genetics , Vacuoles/metabolism , Anthocyanins/metabolism , Flowers/genetics , Flowers/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Nicotiana/genetics
9.
New Phytol ; 211(3): 1092-107, 2016 08.
Article in English | MEDLINE | ID: mdl-27214749

ABSTRACT

Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes.


Subject(s)
Acids/metabolism , Evolution, Molecular , Membrane Transport Proteins/metabolism , Petunia/enzymology , Proton-Translocating ATPases/metabolism , Vacuoles/enzymology , Amino Acid Sequence , Binding Sites , Cations , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Proton-Translocating ATPases/chemistry , Rosa/genetics , Sequence Homology, Amino Acid , Vacuoles/metabolism , Vitis/genetics
10.
Mol Plant ; 8(11): 1651-64, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26343971

ABSTRACT

Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of attachment of the agrobacteria to plant cells and the transport of T-DNA into the cell and further to the nucleus has been well described. However, the exact mechanism of integration into the host's DNA is still unclear, although several models have been proposed. During confirmation of T-DNA insertion alleles from the GABI-Kat collection of Arabidopsis thaliana mutants, we have generated about 34,000 sequences from the junctions between inserted T-DNA and adjacent genome regions. Here, we describe the evaluation of this dataset with regard to existing models for T-DNA integration. The results suggest that integration into the plant genome is mainly mediated by the endogenous plant DNA repair machinery. The observed integration events showed characteristics highly similar to those of repair sites of double-strand breaks with respect to microhomology and deletion sizes. In addition, we describe unexpected integration events, such as large deletions and inversions at the integration site that are relevant for correct interpretation of results from T-DNA insertion mutants in reverse genetics experiments.


Subject(s)
Agrobacterium tumefaciens/genetics , Arabidopsis/genetics , DNA Repair , DNA, Bacterial/genetics , DNA, Plant , Arabidopsis/microbiology , DNA Breaks, Double-Stranded , Sequence Deletion , Sequence Inversion
11.
Plant J ; 82(5): 840-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25891958

ABSTRACT

Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P-type H(+) -ATPases in the plasma membrane, and multimeric vacuolar-type H(+) -ATPases (V-ATPases) and vacuolar H(+) -pyrophosphatases (H(+) -PPases) in endomembranes. Here, we show that reduced accumulation of proanthocyanidins (PAs) and hence the diminished brown seed coloration found in the Arabidopsis thaliana mutant transparent testa 13 (tt13) is caused by disruption of the gene encoding the P3A -ATPase AHA10. Identification of the gene encoded by the tt13 locus completes the molecular characterization of the classical set of transparent testa mutants. Cells of the tt13 seed coat endothelium do not contain PA-filled central vacuoles as observed in the wild-type. tt13 phenocopies tt12, a mutant that is defective in vacuolar import of the PA precursor epicatechin. Our data show that vacuolar loading with PA precursors depends on TT13. Consistent with the tt13 phenotype, but in contrast to other isoforms of P-type H(+) -ATPases, TT13 localizes to the tonoplast. PA accumulation in tt13 is partially restored by expression of the tonoplast localized H(+) -PPase VHP1. Our findings indicate that the P3A -ATPase TT13 functions as a proton pump in the tonoplast of seed coat endothelium cells, and generates the driving force for TT12-mediated transport of PA precursors to the vacuole.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Proanthocyanidins/metabolism , Proton-Translocating ATPases/metabolism , Seeds/metabolism , Vacuoles/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport , Gene Expression Regulation, Plant , Genetic Complementation Test , Mutation , Petunia/genetics , Plants, Genetically Modified , Proton-Translocating ATPases/genetics , Seeds/genetics , Vacuoles/genetics
12.
Planta ; 240(5): 955-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24903359

ABSTRACT

MAIN CONCLUSION: We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10. Flavonoid biosynthesis is one of the best-studied secondary metabolite pathways in plants. In the model system Arabidopsis thaliana it leads to the synthesis of three phenolic compound classes: flavonol glycosides, anthocyanins and proanthocyanidins (PAs). PAs appear brown in their oxidised polymeric forms, and most A. thaliana mutants impaired in flavonoid accumulation were identified through screens for lack of this seed coat pigmentation. These mutants are referred to as transparent testa (tt) or tannin-deficient seed (tds). More than 20 mutants of these types have been published, probably representing most of the genes relevant for PA accumulation in A. thaliana. However, data about the genes involved in PA deposition or oxidation are still rather scarce. Also, for some of the known mutants it is unclear if they represent additional loci or if they are allelic to known genes. For the present study, we have performed a systematic phenotypic characterisation of almost all available tt and tds mutants and built a collection of mutants in the genetic background of the accession Columbia to minimise effects arising from ecotype variation. We have identified a novel tt6 allele from a forward genetic screen and demonstrated that tds3 is allelic to tt12 and tds5 to aha10.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Mutation , Seedlings/genetics , Seeds/genetics , Alleles , Amino Acid Sequence , Anthocyanins/biosynthesis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Base Sequence , Biosynthetic Pathways/genetics , Flavonols/biosynthesis , Genotype , Glycosides/biosynthesis , Phenotype , Proanthocyanidins/biosynthesis , Seedlings/metabolism , Seeds/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
13.
Gene ; 484(1-2): 61-8, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21683773

ABSTRACT

In Arabidopsis thaliana, most mutants impaired in flavonoid accumulation were identified through screens for altered seed pigmentation. Mutations in more than 20 loci have been described that can result in a transparent testa (tt) or tannin deficient seed (tds) phenotype. For some of these mutants it is still unclear if they represent additional loci or if they are allelic to known mutations. In this study, we found that tt17 is allelic to tt11 and tds4 and identified a point mutation in tt17 that affects the gene encoding Leucoanthocyanidin Dioxygenase (LDOX). The mutation results in replacement of a cysteine close to the active site of the enzyme by the hydrophobic amino acid tyrosine. Effects of this mutation on protein structure and activity are discussed in the context of LDOX sequences from various genotypes. Regulation of the LDOX promoter was analyzed and found to be directly controlled by different MYB-BHLH-TTG1 transcription factor complexes containing the BHLH factors EGL3 and TT8. Experiments with single and double loss-of-function mutants identified EGL3 and TT8 as necessary regulators of anthocyanin accumulation in developing A. thaliana seedlings.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Oxygenases/genetics , Alleles , Amino Acid Sequence , Arabidopsis Proteins/metabolism , Models, Molecular , Mutation
14.
Plant J ; 67(3): 406-19, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21477081

ABSTRACT

Wild type seed coats of Arabidopsis thaliana are brown due to the accumulation of proanthocyanidin pigments (PAs). The pigmentation requires activation of phenylpropanoid biosynthesis genes and mutations in some of these genes cause a yellow appearance of seeds, termed transparent testa (tt) phenotype. The TT1 gene encodes a WIP-type zinc finger protein and is expressed in the seed coat endothelium where most of the PAs accumulate in wild type plants. In this study we show that TT1 is not only required for correct expression of PA-specific genes in the seed coat, but also affects CHS, encoding the first enzyme of flavonoid biosynthesis. Many steps of this pathway are controlled by complexes of MYB and BHLH proteins with the WD40 factor TTG1. We demonstrate that TT1 can interact with the R2R3 MYB protein TT2 and that ectopic expression of TT2 can partially restore the lack in PA production in tt1. Reduced seed coat pigmentation was obtained using a TT1 variant lacking nuclear localisation signals. Based on our results we propose that the TT2/TT8/TTG1 regulon may also comprise early genes like CHS and discuss steps to further unravel the regulatory network controlling flavonoid accumulation in endothelium cells during A. thaliana seed development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Flavonoids/biosynthesis , Seeds/metabolism , Alleles , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genetic Loci , Mutation , Phenotype , Pigmentation , Regulon , Seeds/genetics , Transcriptional Activation , Transfection
15.
FEBS Lett ; 584(14): 3116-22, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20541552

ABSTRACT

WIP proteins form a plant specific subfamily of C2H2 zinc finger (ZF) proteins. In this study, we functionally characterized the WIP domain, which consists of four ZF motifs, and discuss molecular functions for WIP proteins. Mutations in each of the ZFs lead to loss of function of the TT1/WIP1 protein in Arabiopsis thaliana. SV40 type nuclear localisation signals were detected in two of the ZFs and functionally characterized using GFP fusions as well as new mutant alleles identified by TILLING. Promoter swap experiments showed that selected WIP proteins are partially able to take over TT1 function. Activity of the AtBAN promoter, a potential TT1 target, could be increased by the addition of TT1 to the TT2-TT8-TTG1 regulatory complex.


Subject(s)
Zinc Fingers/genetics , Amino Acid Motifs/genetics , Mutation , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Plants/genetics , Plants/metabolism , Protein Structure, Tertiary/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...