Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 626(8000): 852-858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326608

ABSTRACT

Bile acids (BAs) are steroid detergents in bile that contribute to the absorption of fats and fat-soluble vitamins while shaping the gut microbiome because of their antimicrobial properties1-4. Here we identify the enzyme responsible for a mechanism of BA metabolism by the gut microbiota involving amino acid conjugation to the acyl-site of BAs, thus producing a diverse suite of microbially conjugated bile acids (MCBAs). We show that this transformation is mediated by acyltransferase activity of bile salt hydrolase (bile salt hydrolase/transferase, BSH/T). Clostridium perfringens BSH/T rapidly performed acyl transfer when provided various amino acids and taurocholate, glycocholate or cholate, with an optimum at pH 5.3. Amino acid conjugation by C. perfringens BSH/T was diverse, including all proteinaceous amino acids except proline and aspartate. MCBA production was widespread among gut bacteria, with strain-specific amino acid use. Species with similar BSH/T amino acid sequences had similar conjugation profiles and several bsh/t alleles correlated with increased conjugation diversity. Tertiary structure mapping of BSH/T followed by mutagenesis experiments showed that active site structure affects amino acid selectivity. These MCBA products had antimicrobial properties, where greater amino acid hydrophobicity showed greater antimicrobial activity. Inhibitory concentrations of MCBAs reached those measured natively in the mammalian gut. MCBAs fed to mice entered enterohepatic circulation, in which liver and gallbladder concentrations varied depending on the conjugated amino acid. Quantifying MCBAs in human faecal samples showed that they reach concentrations equal to or greater than secondary and primary BAs and were reduced after bariatric surgery, thus supporting MCBAs as a significant component of the BA pool that can be altered by changes in gastrointestinal physiology. In conclusion, the inherent acyltransferase activity of BSH/T greatly diversifies BA chemistry, creating a set of previously underappreciated metabolites with the potential to affect the microbiome and human health.


Subject(s)
Acyltransferases , Amidohydrolases , Bile Acids and Salts , Clostridium perfringens , Gastrointestinal Microbiome , Animals , Humans , Mice , Acyltransferases/chemistry , Acyltransferases/metabolism , Alleles , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acids/metabolism , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bariatric Surgery , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Catalytic Domain , Clostridium perfringens/enzymology , Clostridium perfringens/metabolism , Feces/chemistry , Gallbladder/metabolism , Gastrointestinal Microbiome/physiology , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Liver/metabolism , Taurocholic Acid/metabolism
2.
J Strength Cond Res ; 35(11): 3184-3189, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-31453937

ABSTRACT

ABSTRACT: Curtis, RM, Huggins, RA, Benjamin, CL, Sekiguchi, Y, Arent, S, Armwald, B, Pullara, JM, West, CA, and Casa, DJ. Seasonal accumulated workloads in collegiate men's soccer: a comparison of starters and reserves. J Strength Cond Res 35(11): 3184-3189, 2021-The purpose of this investigation was to quantify and compare player's season total-, match-, and training-accumulated workload by player status characteristics (i.e., starter vs. reserve) in American collegiate men's soccer. Global positioning system (GPS) and heart rate (HR)-derived workloads were analyzed from 82 collegiate male soccer athletes from 5 separate teams over the 2016 and 2017 seasons. Differences in total physical and physiological workloads (i.e., total distance, accelerations, and weighted HR-zone training impulse [TRIMP] score) as well as workloads over a range of intensity zones were examined using multilevel mixed models, with mean difference (MD) and effect size (ES) reported. Starters accumulated substantially more total distance (MD = 82 km, ES = 1.23), TRIMP (MD = 2,210 au, ES = 0.63), and total accelerations (MD = 6,324 n, ES = 0.66) over the season. Total accumulated distance in all velocity zones (ES [range] = 0.87-1.08), all accelerations zones (ES [range] = 0.54-0.74), and time spent at 70-90% HRmax (ES [range] = 0.60-1.12) was also greater for starters. Reserves accumulated substantially more total distance (MD = 20 km, ES = 0.43) and TRIMP (MD = 1,683 au, ES = 0.79) during training. Although reserves show elevated physical and physiological loads during training compared with starters, there is an imbalance in overall workloads between player roles, with starters incurring substantially more match and total seasonal workloads. These results indicate managing player workloads in soccer requires attention to potential imbalances between players receiving variable match times. Coaches and practitioners in collegiate men's soccer may consider implementing strategies to reduce discrepancies in loading between starters and reserves. Individualized monitoring of training and match workloads may assist in the implementation of more balanced load management programs.


Subject(s)
Soccer , Workload , Acceleration , Athletes , Humans , Male , Seasons , Soccer/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...