Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 21(1): 252, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537575

ABSTRACT

BACKGROUND: In recent years, crop production has expanded due to the variety of commercially available species. This increase in production has led to global competition and the search for biostimulant products that improve crop quality and yield. At the same time, agricultural products that protect against diseases caused by phytopathogenic microorganisms are needed. Thus, the green synthesis of selenium nanoparticles (SeNPs) is a proposal for achieving these needs. In this research, SeNPs were synthesized from methanolic extract of Amphipterygium glaucum leaves, and chemically and biologically characterized. RESULTS: The characterization of SeNPs was conducted by ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM), electron microscopy transmission (TEM), Dynamic Light Scattering (DLS), energy dispersion X-ray spectroscopy (EDX), and infrared spectrophotometry (FTIR) techniques. SeNPs with an average size of 40-60 nm and spherical and needle-shaped morphologies were obtained. The antibacterial activity of SeNPs against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis was evaluated. The results indicate that the methanolic extracts of A. glaucum and SeNPs presented a high antioxidant activity. The biostimulant effect of SeNPs (10, 20, 50, and 100 µM) was evaluated in vinca (Catharanthus roseus), and calendula (Calendula officinalis) plants under greenhouse conditions, and they improved growth parameters such as the height, the fresh and dry weight of roots, stems, and leaves; and the number of flowers of vinca and calendula. CONCLUSIONS: The antibacterial, antioxidant, and biostimulant properties of SeNPs synthesized from A. glaucum extract demonstrated in this study support their use as a promising tool in crop production.


Subject(s)
Nanoparticles , Selenium , Antioxidants/pharmacology , Antioxidants/chemistry , Selenium/pharmacology , Selenium/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology
2.
ACS Omega ; 7(25): 21763-21774, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35785308

ABSTRACT

In this work, we report a nonaqueous one-step method to synthesize polystyrene macroporous magnetic nanocomposites through high internal phase emulsions (HIPEs) formulated with the deep eutectic solvent (DES) composed of urea:choline chloride (U:ChCl, in a 2:1 molar ratio) as the internal phase and co-stabilized with mixtures of Span 60 surfactant and non-functionalized magnetite nanoparticles (Fe3O4 NPs). The porous structure and the magnetic and lipophilic properties of the nanocomposite materials were easily tailored by varying the amount of Fe3O4 NPs (0, 2, 5 and 10 wt %) and the surfactant Span 60 (0, 5, 10, and 20 wt %) used in the precursor emulsion. The resultant nanocomposite polyHIPEs exhibit high sorption capacity toward different oils (hexane, gasoline, and vegetable oil) due to their high porosity, interconnectivity, and hydrophobic surface. It was observed that the oil sorption capacity was improved when the amount of surfactant decreased and Fe3O4 NPs increased in HIPE formulation. Therefore, polyHIPE formulated with 5 and 10 wt % Span 60 and Fe3O4 NPs, respectively, showed the highest oil sorption capacities of 4.151, 3.556, and 3.266 g g-1 for gasoline, hexane, and vegetable oil, respectively. In addition, the magnetic monoliths were reused for more than ten sorption/desorption cycles without losing their oil sorption capacity.

3.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641478

ABSTRACT

The use of selenium nanoparticles (SeNPs) in the biomedical area has been increasing as an alternative to the growing bacterial resistance to antibiotics. In this research, SeNPs were synthesized by green synthesis using ascorbic acid (AsAc) as a reducing agent and methanolic extract of Calendula officinalis L. flowers as a stabilizer. Characterization of SeNPs was performed by UV-vis spectrophotometry, infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. SeNPs of 40-60 nm and spherical morphologies were obtained. The antibacterial activity of marigold extracts and fractions was evaluated by disk diffusion methodology. The evaluation of SeNPs at different incubation times was performed through the colony-forming unit (CFU) count, in both cases against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis bacteria. Partial antibacterial activity was observed with methanolic extracts of marigold leaves and flowers and total inhibition with SeNPs from 2 h for S. marcescens, 1 h for E. cloacae, and 30 min for A. faecalis. In addition, SeNPs were found to exhibit antioxidant activity. The results indicate that SeNPs present a potentiated effect of both antimicrobial and antioxidant activity compared to the individual use of marigold extracts or sodium selenite (Na2SeO3). Their application emerges as an alternative for the control of clinical pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Calendula/chemistry , Nanoparticles/administration & dosage , Plant Extracts/metabolism , Selenium/chemistry , Bacteria/growth & development , Bacteria/isolation & purification , Humans , Nanoparticles/chemistry
4.
J Cancer ; 12(2): 571-583, 2021.
Article in English | MEDLINE | ID: mdl-33391453

ABSTRACT

CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.

5.
Animals (Basel) ; 10(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32972009

ABSTRACT

Clostridium perfringens (Cp.) is the cause of human foodborne desease. Meat and poultry products are identified as the main source of infection for humans. Cp. can be found in poultry litter, feces, soil, dust, and healthy birds' intestinal contents. Cp. strains are known to secrete over 20 identified toxins and enzymes that could potentially be the principal virulence factors, capable of degrading mucin, affecting enterocytes, and the small intestine epithelium, involved in necrotic enteritis (NE) pathophysiology, also leading to immunological responses, microbiota modification and anatomical changes. Different environmental and dietary factors can determine the colonization of this microorganism. It has been observed that the incidence of Cp-associated to NE in broilers has increased in countries that have stopped using antibiotic growth promoters. Since the banning of such antibiotic growth promoters, several strategies for Cp. control have been proposed, including dietary modifications, probiotics, prebiotics, synbiotics, phytogenics, organic acids, and vaccines. However, there are aspects of the pathology that still need to be clarified to establish better actions to control and prevention. This paper reviews the current knowledge about Cp. as foodborne pathogen, the pathophysiology of NE, and recent findings on potential strategies for its control.

6.
Molecules ; 21(7)2016 Jul 16.
Article in English | MEDLINE | ID: mdl-27438820

ABSTRACT

The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH) nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Gallic Acid/chemistry , Gallic Acid/toxicity , Hydroxides/chemistry , Ions/chemistry , Adenocarcinoma , Antineoplastic Agents, Phytogenic/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Electron Spin Resonance Spectroscopy , Humans , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
7.
Eukaryot Cell ; 11(9): 1132-42, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22798393

ABSTRACT

In the fungus Aspergillus nidulans, inactivation of the flbA to -E, fluG, fluF, and tmpA genes results in similar phenotypes, characterized by a delay in conidiophore and asexual spore production. flbB to -D encode transcription factors needed for proper expression of the brlA gene, which is essential for asexual development. However, recent evidence indicates that FlbB and FlbE also have nontranscriptional functions. Here we show that fluF1 is an allele of flbD which results in an R47P substitution. Amino acids C46 and R47 are highly conserved in FlbD and many other Myb proteins, and C46 has been proposed to mediate redox regulation. Comparison of ΔflbD and flbD(R47P) mutants uncovered a new and specific role for flbD during sexual development. While flbD(R47P) mutants retain partial function during conidiation, both ΔflbD and flbD(R47P) mutants are unable to develop the peridium, a specialized external tissue that differentiates during fruiting body formation and ends up surrounding the sexual spores. This function, unique among other fluffy genes, does not affect the viability of the naked ascospores produced by mutant strains. Notably, ascospore development in these mutants is still dependent on the NADPH oxidase NoxA. We generated R47K, C46D, C46S, and C46A mutant alleles and evaluated their effects on asexual and sexual development. Conidiation defects were most severe in ΔflbD mutants and stronger in R47P, C46D, and C46S strains than in R47K strains. In contrast, mutants carrying the flbD(C46A) allele exhibited conidiation defects in liquid culture only under nitrogen starvation conditions. The R47K, R47P, C46D, and C46S mutants failed to develop any peridial tissue, while the flbD(C46A) strain showed normal peridium development and increased cleistothecium formation. Our results show that FlbD regulates both asexual and sexual differentiation, suggesting that both processes require FlbD DNA binding activity and that FlbD is involved in the response to nitrogen starvation.


Subject(s)
Aspergillus nidulans/genetics , Fungal Proteins/metabolism , Trans-Activators/metabolism , Aspergillus nidulans/growth & development , Aspergillus nidulans/physiology , Fungal Proteins/genetics , Gene Deletion , Mutation , NADPH Oxidases/metabolism , Nitrogen/metabolism , Reproduction, Asexual/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL