Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298516

ABSTRACT

Hypobaric hypoxia under chromic conditions triggers hypoxic pulmonary vasoconstriction (HPV) and right ventricular hypertrophy (RVH). The role of zinc (Zn) under hypoxia is controversial and remains unclear. We evaluated the effect of Zn supplementation in prolonged hypobaric hypoxia on HIF2α/MTF-1/MT/ZIP12/PKCε pathway in the lung and RVH. Wistar rats were exposed to hypobaric hypoxia for 30 days and randomly allocated into three groups: chronic hypoxia (CH); intermittent hypoxia (2 days hypoxia/2 days normoxia; CIH); and normoxia (sea level control; NX). Each group was subdivided (n = 8) to receive either 1% Zn sulfate solution (z) or saline (s) intraperitoneally. Body weight, hemoglobin, and RVH were measured. Zn levels were evaluated in plasma and lung tissue. Additionally, the lipid peroxidation levels, HIF2α/MTF-1/MT/ZIP12/PKCε protein expression and pulmonary artery remodeling were measured in the lung. The CIH and CH groups showed decreased plasma Zn and body weight and increased hemoglobin, RVH, and vascular remodeling; the CH group also showed increased lipid peroxidation. Zn administration under hypobaric hypoxia upregulated the HIF2α/MTF-1/MT/ZIP12/PKCε pathway and increased RVH in the intermittent zinc group. Under intermittent hypobaric hypoxia, Zn dysregulation could participate in RVH development through alterations in the pulmonary HIF2α/MTF1/MT/ZIP12/PKCε pathway.


Subject(s)
Lung , Zinc , Rats , Animals , Rats, Wistar , Lung/metabolism , Hypoxia/metabolism , Hypertrophy, Right Ventricular/etiology , Body Weight
2.
Rev. cienc. salud (Bogotá) ; 20(3): 1-16, sep.-dic. 2022.
Article in English | LILACS | ID: biblio-1427610

ABSTRACT

Living at high altitude increases oxidative stress. Likewise, growth and maturation during adolescence can increase levels of reactive oxygen species (ros). Changes in redox profiles have been evaluated in adults living at high altitudes; however, there are no studies on these changes in peripubertal populations living at moderate altitudes, we determine how living at moderate altitude affects the oxidative and inflammatory status of healthy preadolescents and adolescents. Materials and Methods: A cross-sectional study was conducted in healthy male Colombian preadolescents and adoles-cents (9­18 years old, Tanner scale classification) who lived at low altitude (n = 26) or moderate altitude (n = 26). Plasma oxidative and inflammatory status was assessed via spectrophotometry. Oxidative markers included malondialdehyde, 4-hydroxy-trans-2-nonenal, and carbonyl groups. Antioxidant markers included total antioxidant status, glutathione, catalase, superoxide dismutase, uric acid, and thiols. Inflammatory markers included interleukins-1, -6, and -10 and tumor necrosis factor. Results:Only uric acid levels were higher in adolescents (5.34 and 5.66 mg/dl) compared to preadolescents (3.85 and 4.07 mg/dl) in both moderate and low altitude groups, respectively. Participants who lived at mod-erate altitude presented significantly higher levels of malondialdehyde (4.82 and 3.73 nM/mg protein) and lower level of glutathione and thiols (1.21 and 1.26 µmol/mg protein) than in those at low altitude. Their inflammatory profiles did not differ. Conclusion: Oxidant profiles increased in peripubertal popu-lations residing at moderate altitude; this could be owing to antioxidant consumption by ros and active metabolism during puberty.


vivir en altura es un factor que se asocia con el estrés oxidativo. El crecimiento y la maduración pueden ser un estresor adicional. Es insuficiente la evidencia sobre alteraciones del perfil redox en peripúberes residentes a altitudes moderadas. El propósito fue establecer el efecto de vivir en una altitud moderada sobre el perfil redox e inflamatorio en preadolescentes y adolescentes sanos. Materiales y métodos: estudio transversal en varones preadolescentes y adolescentes sanos (9-18 años) que viven en altitud baja (n = 26) o altitud moderada (n = 26). El estado oxidativo plasmático se evaluó mediante espectrofotometría a través de marcadores de oxidación (malondialdehído e hidroxinonenal y grupos carbonilo) y antioxidantes (estado antioxidante total, glutatión, catalasa, superóxido dismutasa, ácido úrico y tioles). El perfil inflamatorio se midió con interleucinas 1, 6, 10 y factor de necrosis tumoral α. Resultados: solo el ácido úrico fue diferente entre adolescentes (5.34 y 5.66 mg/dl para moderada y baja altitud, respectivamente) y preadolescentes (3.85 y 4.07 mg/dl para moderada y baja altitud, res-pectivamente). El grupo de preadolescentes y adolescentes de moderada altitud presentó niveles más altos de malondialdehído (4.82 y 3.73 nM/mg de proteína, respectivamente) y menor glutatión y tioles (1.21 y 1.26 µmol/mg de proteína), en comparación con sus contrapartes de baja altitud. Conclusión: las poblaciones peripúberes que residen en una altitud moderada presentan un perfil oxidante más alto, lo que puede estar relacionado con la depleción de antioxidantes, por una mayor producción de especies reactivas de oxígeno relacionada con la hipoxia y el metabolismo activo de la pubertad.


viver em grandes altitudes é um fator de estresse associado ao estresse oxidativo. Durante a adolescência, os processos de crescimento e maturação podem aumentar as espécies reativas de oxi-gênio. Alterações no perfil redox foram estudadas em adultos expostos a grandes altitudes, mas não em populações peripubertais vivendo em altitudes moderadas. Nosso objetivo é estabelecer o efeito de viver em uma altitude moderada sobre o estado oxidativo e inflamatório em pré-adolescentes e adolescentes saudáveis. Materiais and métodos: foi realizado um estudo transversal em pré-adolescentes e adolescen-tes colombianos saudáveis (9-18 anos, na escala de classificação de Tanner) que viviam em baixa altitude (n = 26) ou altitude moderada (n = 26). O estado oxidativo e inflamatório do plasma foi avaliado por espectrofotometria: 1) Marcadores de oxidação: grupos Malondialdeído + 4-hidroxi-trans-2-nonenal e carbonila; 2) antioxidantes: estado antioxidante total, glutationa, catalase, superóxido dismutase, ácido úrico e tióis; 3) Marcadores de inflamação: interleucinas 1, 6, 10 e fator de necrose tumoral α. Resultados:apenas o ácido úrico foi maior em adolescentes (5,34 e 5,66 mg/dl) em comparação com pré-adolescentes (3,85 e 4,07 mg/dl) dos grupos de altitude moderada e baixa, respectivamente. A altitude moderada apre-sentou níveis significativamente maiores de Malondialdeído (4,82 e 3,73 nM/mg de proteína), e menores níveis de Glutationa e tióis (1,21 e 1,26 µmol/mg de proteína), em comparação com a baixa altitude. Nenhuma diferença foi detectada no perfil inflamatório. Conclusão: as populações peripubertais que residem em altitude moderada apresentam maior perfil oxidante, o que pode estar relacionado ao con-sumo de antioxidantes devido à maior produção de ros relacionada à hipóxia e ao metabolismo ativo por volta da puberdade.


Subject(s)
Humans , Puberty , Oxidative Stress , Minors , Altitude , Growth , Metabolism
3.
Int J Mol Sci ; 23(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35682884

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.


Subject(s)
AMP-Activated Protein Kinases , Hypertension, Pulmonary , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate , Altitude Sickness , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Hypoxia , Pulmonary Artery/pathology
4.
Int J Mol Sci ; 21(22)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202984

ABSTRACT

One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats developed RVH and showed an upregulation of LOX-1, Nox2 and p22phox and an increase in lipid peroxidation, HIF-1α stabilization and p38α activation. Rats with long-term CIH-induced RVH clearly showed Nox2, p22phox and LOX-1 upregulation and increased lipid peroxidation, HIF-1α stabilization and p38α activation. Therefore, these molecules may be considered new targets in CIH-induced RVH.


Subject(s)
Gene Expression Regulation, Enzymologic , Hypertrophy, Right Ventricular/enzymology , Hypoxia/enzymology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 14/metabolism , NADPH Oxidase 2/biosynthesis , Up-Regulation , Animals , Chronic Disease , Disease Models, Animal , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/pathology , Hypoxia/complications , Hypoxia/pathology , Male , Rats , Rats, Wistar
5.
Biomedicines ; 8(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081182

ABSTRACT

Fetal undernutrition programs hypertension and cardiovascular diseases, and resistance artery remodeling may be a contributing factor. We aimed to assess if fetal undernutrition induces resistance artery remodeling and the relationship with hypertension. Sprague-Dawley dams were fed ad libitum (Control) or with 50% of control intake between days 11 and 21 of gestation (maternal undernutrition, MUN). In six-month-old male and female offspring we assessed blood pressure (anesthetized and tail-cuff); mesenteric resistance artery (MRA) structure and mechanics (pressure myography), cellular and internal elastic lamina (IEL) organization (confocal microscopy) and plasma MMP-2 and MMP-9 activity (zymography). Systolic blood pressure (SBP, tail-cuff) and plasma MMP activity were assessed in 18-month-old rats. At the age of six months MUN males exhibited significantly higher blood pressure (anesthetized or tail-cuff) and plasma MMP-9 activity, while MUN females did not exhibit significant differences, compared to sex-matched controls. MRA from 6-month-old MUN males and females showed a smaller diameter, reduced adventitial, smooth muscle cell density and IEL fenestra area, and a leftward shift of stress-strain curves. At the age of eighteen months SBP and MMP-9 activity were higher in both MUN males and females, compared to sex-matched controls. These data suggest that fetal undernutrition induces MRA inward eutrophic remodeling and stiffness in both sexes, independent of blood pressure level. Resistance artery structural and mechanical alterations can participate in the development of hypertension in aged females and may contribute to adverse cardiovascular events associated with low birth weight in both sexes.

6.
Front Physiol ; 11: 342, 2020.
Article in English | MEDLINE | ID: mdl-32372974

ABSTRACT

BACKGROUND: Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure lead to right ventricular hypertrophy (RVH). Weight loss is an effective intervention to improve cardiac function and energy metabolism in cardiac hypertrophy. Likewise, caloric restriction (CR) also plays an important role in this cardioprotection through AMPK activation. We aimed to determine the influence of body weight (BW) on RVH, AMPK and related variables by comparing rats exposed to both hypoxic conditions. METHODS: Sixty male adult rats were separated into two groups (n = 30 per group) according to their previous diet: a caloric restriction (CR) group and an ad libitum (AL) group. Rats in both groups were randomly assigned to 3 groups: a normoxic group (NX, n = 10), a CIH group (2 days hypoxia/2 days normoxia; n = 10) and a CH group (n = 10). The CR group was previously fed 10 g daily, and the other was fed ad libitum. Rats were exposed to simulated hypobaric hypoxia in a hypobaric chamber set to 428 Torr (the equivalent pressure to that at an altitude of 4,600 m above sea level) for 30 days. Measurements included body weight; hematocrit; serum insulin; glycemia; the degree of RVH (Fulton's index and histology); and AMPK, mTOR, and PP2C expression levels in the right ventricle determined by western blotting. RESULTS: A lower degree of RVH, higher AMPK activation, and no activation of mTOR were found in the CR groups exposed to hypobaric hypoxia compared to the AL groups (p < 0.05). Additionally, decreased glycemia and serum insulin levels were observed. Interestingly, PP2C expression showed an increase in the AL groups but not in the CR groups (p < 0.05). CONCLUSION: Maintaining a low weight before and during exposure to high-altitude hypoxia, during either CH or CIH, could prevent a major degree of RVH. This cardioprotection would likely be due to the activation of AMPK. Thus, body weight is a factor that might contribute to RVH at high altitudes.

7.
Sci Rep ; 9(1): 599, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679477

ABSTRACT

Infusions of murtilla leaves exhibit antioxidant, analgesic, and anti-inflammatory properties. Several compounds that are structurally similar to madecassic acid (MA), a component of murtilla leaf extract (ethyl acetate extract, EAE), have been shown to inhibit protein tyrosine phosphatase 1B (PTP1P). The aim of this study was to evaluate if EAE and two compounds identified in EAE (MA and myricetin [MYR]) could have a beneficial effect on systemic and vascular insulin sensitivity and endothelial function in a model of diet-induced obesity. Experiments were performed in 5-week-old male C57BL6J mice fed with a standard (LF) or a very high-fat diet (HF) for 4 weeks and treated with EAE, MA, MYR, or the vehicle as control (C). EAE significantly inhibited PTP1B. EAE and MA, but not MYR, significantly improved systemic insulin sensitivity in HF mice and vascular relaxation to Ach in aorta segments, due to a significant increase of eNOS phosphorylation and enhanced nitric oxide availability. EAE, MA, and MYR also accounted for increased relaxant responses to insulin in HF mice, thus evidencing that the treatments significantly improved aortic insulin sensitivity. This study shows for the first time that EAE and MA could constitute interesting candidates for treating insulin resistance and endothelial dysfunction associated with obesity.


Subject(s)
Diet, High-Fat , Endothelium, Vascular/drug effects , Myrtaceae/chemistry , Obesity/pathology , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Aorta/metabolism , Disease Models, Animal , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Insulin/pharmacology , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Myrtaceae/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Obesity/metabolism , Phosphorylation , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Triterpenes/chemistry , Triterpenes/metabolism
8.
Front Physiol ; 9: 799, 2018.
Article in English | MEDLINE | ID: mdl-30002630

ABSTRACT

Background: In chronic hypoxia (CH) and short-term chronic intermittent hypoxia (CIH) exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX) and compared the findings. Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr) group (n = 10), a CIH group (2 days hypoxia/2 days NX; n = 10) and a CH group (n = 10). Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m). Feeding (10 g daily) and fasting times were accurately controlled. Measurements included food intake (every 4 days), weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA), and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30. Results: (1) Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05). (2) A moderate decrease in glycemia and plasma insulin was found. (3) Insulin sensitivity was greater in the CIH group (p < 0.05). (4) There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5) The level of activated AMPK was increased only in the CIH group (p < 0.05). (6) Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05). Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there is no increase of GLUT1 or GLUT4 levels or in Akt activation. Therefore, cellular regulation of glucose seems to primarily involve GLUT4 translocation to the cell membrane in response to hypoxia-mediated AMPK activation.

9.
Food Chem ; 183: 83-90, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25863614

ABSTRACT

Physical features, bioactive compounds and total antioxidant capacity (TAC) of coloured quinoa varieties (Chenopodium quinoa Willd.) from Peruvian Altiplano were studied. Quinoa seeds did not show a pure red colour, but a mixture which corresponded to different fractal colour values (51.0-71.8), and they varied from small to large size. Regarding bioactive compounds, total phenolic (1.23-3.24mg gallic acid equivalents/g) and flavonol contents (0.47-2.55mg quercetin equivalents/g) were highly correlated (r=0.910). Betalains content (0.15-6.10mg/100g) was correlated with L colour parameter (r=-0.569), total phenolics (r=0.703) and flavonols content (r=0.718). Ratio of betaxanthins to betacyanins (0.0-1.41) was negatively correlated with L value (r=-0.744). Whereas, high TAC values (119.8-335.9mmol Trolox equivalents/kg) were negatively correlated with L value (r=-0.779), but positively with betalains (r=0.730), as well as with free (r=0.639), bound (r=0.558) and total phenolic compounds (r=0.676). Unexploited coloured quinoa seeds are proposed as a valuable natural source of phenolics and betalains with high antioxidant capacity.


Subject(s)
Betalains/chemistry , Chenopodium quinoa/chemistry , Hydroxybenzoates/chemistry , Phenols/analysis , Seeds/chemistry , Antioxidants , Peru
10.
Biomed Res Int ; 2015: 169841, 2015.
Article in English | MEDLINE | ID: mdl-25738150

ABSTRACT

Long-term chronic intermittent exposure to altitude hypoxia is a labor phenomenon requiring further research. Using a rat model, we examined whether this type of exposure differed from chronic exposure in terms of pulmonary artery remodeling and other features. Rats were subjected to chronic hypoxia (CH, n = 9) and long-term intermittent hypoxia (CIH2x2; 2 days of hypoxia/2 days of normoxia, n = 10) in a chamber (428 Torr, 4,600 m of altitude) for 46 days and compared to rats under normoxia (NX, n = 10). Body weight, hematocrit, and right ventricle ratio were measured. Pulmonary artery remodeling was assessed using confocal microscopy of tissues stained with a nuclear dye (DAPI) and CD11b antibody. Both hypoxic conditions exhibited increased hematocrit and hypertrophy of the right ventricle, tunica adventitia, and tunica media, with no changes in lumen size. The medial hypertrophy area (larger in CH) depicted a significant increase in smooth muscle cell number. Additionally, CIH2x2 increased the adventitial hypertrophy area, with an increased cellularity and a larger prevalence of clustered inflammatory cells. In conclusion, CIH2x2 elicits milder effects on pulmonary artery medial layer muscularization and subsequent right ventricular hypertrophy than CH. However, CIH2x2 induces greater and characteristic alterations of the adventitial layer.


Subject(s)
Adventitia , Altitude Sickness , Hypoxia , Pulmonary Artery , Vascular Remodeling , Adventitia/pathology , Adventitia/physiopathology , Altitude Sickness/pathology , Altitude Sickness/physiopathology , Animals , Disease Models, Animal , Hypoxia/pathology , Hypoxia/physiopathology , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Rats , Rats, Wistar
11.
Biomed Res Int ; 2014: 610474, 2014.
Article in English | MEDLINE | ID: mdl-24719876

ABSTRACT

Work at high altitude in shifts exposes humans to a new form of chronic intermittent hypoxia, with still unknown health consequences. We have established a rat model resembling this situation, which develops a milder form of right ventricular hypertrophy and pulmonary artery remodelling compared to continuous chronic exposure. We aimed to compare the alterations in pulmonary artery nitric oxide (NO) availability induced by these forms of hypoxia and the mechanisms implicated. Rats were exposed for 46 days to normoxia or hypobaric hypoxia, either continuous (CH) or intermittent (2 day shifts, CIH2x2), and assessed: NO and superoxide anion availability (fluorescent indicators and confocal microscopy); expression of phosphorylated endothelial NO synthase (eNOS), NADPH-oxidase (p22phox), and 3-nitrotyrosine (western blotting); and NADPH-oxidase location (immunohistochemistry). Compared to normoxia, (1) NO availability was reduced and superoxide anion was increased in both hypoxic groups, with a larger effect in CH, (2) eNOS expression was only reduced in CH, (3) NADPH-oxidase was similarly increased in both hypoxic groups, and (4) 3-nitrotyrosine was increased to a larger extent in CH. In conclusion, intermittent hypoxia reduces NO availability through superoxide anion destruction, without reducing its synthesis, while continuous hypoxia affects both, producing larger nitrosative damage which could be related to the more severe cardiovascular alterations.


Subject(s)
Hypertrophy, Right Ventricular/metabolism , Hypoxia/metabolism , Nitric Oxide/metabolism , Superoxides/metabolism , Animals , Hypertrophy, Right Ventricular/pathology , Hypoxia/pathology , Male , NADH, NADPH Oxidoreductases/metabolism , NADPH Oxidase 1 , Nitric Oxide Synthase Type III/metabolism , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL