Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Brain Commun ; 4(6): fcac258, 2022.
Article in English | MEDLINE | ID: mdl-36382217

ABSTRACT

Proton magnetic resonance spectroscopy is a non-invasive method of exploring cerebral metabolism. In Huntington's disease, altered proton magnetic resonance spectroscopy-determined concentrations of several metabolites have been described; however, findings are often discrepant and longitudinal studies are lacking. Proton magnetic resonance spectroscopy metabolites may represent a source of biomarkers, thus their relationship with established markers of disease progression require further exploration to assess prognostic value and elucidate pathways associated with neurodegeneration. In a prospective single-site controlled cohort study with standardized collection of CSF, blood, phenotypic and volumetric imaging data, we used 3 T proton magnetic resonance spectroscopy in conjunction with the linear combination of model spectra method to quantify seven metabolites (total n-acetylaspartate, total creatine, total choline, myo-inositol, GABA, glutamate and glutathione) in the putamen of 59 participants at baseline (15 healthy controls, 15 premanifest and 29 manifest Huntington's disease gene expansion carriers) and 48 participants at 2-year follow-up (12 healthy controls, 13 premanifest and 23 manifest Huntington's disease gene expansion carriers). Intergroup differences in concentration and associations with CSF and plasma biomarkers; including neurofilament light chain and mutant Huntingtin, volumetric imaging markers; namely whole brain, caudate, grey matter and white matter volume, measures of disease progression and cognitive decline, were assessed cross-sectionally using generalized linear models and partial correlation. We report no significant groupwise differences in metabolite concentration at baseline but found total creatine and total n-acetylaspartate to be significantly reduced in manifest compared with premanifest participants at follow-up. Additionally, total creatine and myo-inositol displayed significant associations with reduced caudate volume across both time points in gene expansion carriers. Although relationships were observed between proton magnetic resonance spectroscopy metabolites and biofluid measures, these were not consistent across time points. To further assess prognostic value, we examined whether baseline proton magnetic resonance spectroscopy values, or rate of change, predicted subsequent change in established measures of disease progression. Several associations were found but were inconsistent across known indicators of disease progression. Finally, longitudinal mixed-effects models revealed glutamine + glutamate to display a slow linear decrease over time in gene expansion carriers. Altogether, our findings show some evidence of reduced total n-acetylaspartate and total creatine as the disease progresses and cross-sectional associations between select metabolites, namely total creatine and myo-inositol, and markers of disease progression, potentially highlighting the proposed roles of neuroinflammation and metabolic dysfunction in disease pathogenesis. However, the absence of consistent group differences, inconsistency between baseline and follow-up, and lack of clear longitudinal change suggests that proton magnetic resonance spectroscopy metabolites have limited potential as Huntington's disease biomarkers.

2.
Sci Rep ; 11(1): 3481, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568689

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is implicated in the survival of striatal neurons. BDNF function is reduced in Huntington's disease (HD), possibly because mutant huntingtin impairs its cortico-striatal transport, contributing to striatal neurodegeneration. The BDNF trophic pathway is a therapeutic target, and blood BDNF has been suggested as a potential biomarker for HD, but BDNF has not been quantified in cerebrospinal fluid (CSF) in HD. We quantified BDNF in CSF and plasma in the HD-CSF cohort (20 pre-manifest and 40 manifest HD mutation carriers and 20 age and gender-matched controls) using conventional ELISAs and an ultra-sensitive immunoassay. BDNF concentration was below the limit of detection of the conventional ELISAs, raising doubt about previous CSF reports in neurodegeneration. Using the ultra-sensitive method, BDNF concentration was quantifiable in all samples but did not differ between controls and HD mutation carriers in CSF or plasma, was not associated with clinical scores or MRI brain volumetric measures, and had poor ability to discriminate controls from HD mutation carriers, and premanifest from manifest HD. We conclude that BDNF in CSF and plasma is unlikely to be a biomarker of HD progression and urge caution in interpreting studies where conventional ELISA was used to quantify CSF BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/cerebrospinal fluid , Huntington Disease/blood , Huntington Disease/cerebrospinal fluid , Adult , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoassay , Male , Middle Aged
3.
Sci Transl Med ; 12(574)2020 12 16.
Article in English | MEDLINE | ID: mdl-33328328

ABSTRACT

The longitudinal dynamics of the most promising biofluid biomarker candidates for Huntington's disease (HD)-mutant huntingtin (mHTT) and neurofilament light (NfL)-are incompletely defined. Characterizing changes in these candidates during disease progression could increase our understanding of disease pathophysiology and help the identification of effective therapies. In an 80-participant cohort over 24 months, mHTT in cerebrospinal fluid (CSF), as well as NfL in CSF and blood, had distinct longitudinal trajectories in HD mutation carriers compared with controls. Baseline analyte values predicted clinical disease status, subsequent clinical progression, and brain atrophy, better than did the rate of change in analytes. Overall, NfL was a stronger monitoring and prognostic biomarker for HD than mHTT. Nonetheless, mHTT has prognostic value and might be a valuable pharmacodynamic marker for huntingtin-lowering trials.


Subject(s)
Huntingtin Protein/genetics , Huntington Disease , Neurofilament Proteins/genetics , Atrophy , Cohort Studies , Humans , Huntington Disease/genetics , Intermediate Filaments
4.
J Vasc Surg ; 67(5): 1571-1583.e3, 2018 05.
Article in English | MEDLINE | ID: mdl-28648478

ABSTRACT

OBJECTIVE: Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques. This study characterized inflammation in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) as a magnetic resonance imaging (MRI) probe. METHODS: DT-MPIO were used to detect and characterize inflammatory markers, vascular cell adhesion molecule 1 (VCAM-1). and P-selectin on (1) tumor necrosis factor-α-treated cells by immunocytochemistry and (2) aortic root plaques of apolipoprotein-E deficient mice by in vivo MRI. Furthermore, apolipoprotein E-deficient mice with focal carotid plaques of different phenotypes were developed by means of periarterial cuff placement to allow in vivo molecular MRI using these probes. The association between biomarkers and the magnetic resonance signal in different contrast groups was assessed longitudinally in these models. RESULTS: Immunocytochemistry confirmed specificity and efficacy of DT-MPIO to VCAM-1 and P-selectin. Using this in vivo molecular MRI strategy, we demonstrated (1) the DT-MPIO-induced magnetic resonance signal tracked with VCAM-1 (r = 0.69; P = .014), P-selectin (r = 0.65; P = .022), and macrophage content (r = 0.59; P = .045) within aortic root plaques and (2) high-risk inflamed plaques were distinguished from noninflamed plaques in the murine carotid artery within a practical clinical imaging time frame. CONCLUSIONS: These molecular MRI probes constitute a novel imaging tool for in vivo characterization of plaque vulnerability and inflammatory activity in atherosclerosis. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid atherosclerotic disease in the future.


Subject(s)
Aorta/diagnostic imaging , Aortic Diseases/diagnostic imaging , Carotid Arteries/diagnostic imaging , Carotid Artery Diseases/diagnostic imaging , Contrast Media/administration & dosage , Ferric Compounds/administration & dosage , Fluorescent Dyes/administration & dosage , Inflammation Mediators/metabolism , Inflammation/diagnostic imaging , Magnetic Resonance Angiography , Molecular Imaging/methods , Plaque, Atherosclerotic , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Biomarkers/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Diseases/metabolism , Carotid Artery Diseases/pathology , Contrast Media/pharmacology , Disease Models, Animal , Ferric Compounds/pharmacokinetics , Fluorescent Dyes/pharmacokinetics , Genetic Predisposition to Disease , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout, ApoE , P-Selectin/metabolism , Phenotype , Predictive Value of Tests , Prognosis , RAW 264.7 Cells , Rupture, Spontaneous , Time Factors , Vascular Cell Adhesion Molecule-1/metabolism
5.
PLoS One ; 12(2): e0172776, 2017.
Article in English | MEDLINE | ID: mdl-28241065

ABSTRACT

Dexamphetamine (AMPH) is a psychostimulant drug that is used both recreationally and as medication for attention deficit hyperactivity disorder. Preclinical studies have demonstrated that repeated exposure to AMPH can induce damage to nerve terminals of dopamine (DA) neurons. We here assessed the underlying neurobiological changes in the DA system following repeated AMPH exposure and pre-treated rats with AMPH or saline (4 times 5 mg/kg s.c., 2 hours apart), followed by a 1-week washout period. We then used pharmacological MRI (phMRI) with a methylphenidate (MPH) challenge, as a sensitive and non-invasive in-vivo measure of DAergic function. We subsequently validated the DA-ergic changes post-mortem, using a.o. high-performance liquid chromatography (HPLC) and autoradiography. In the AMPH pre-treated group, we observed a significantly larger BOLD response to the MPH challenge, particularly in DA-ergic brain areas and their downstream projections. Subsequent autoradiography studies showed that AMPH pre-treatment significantly reduced DA transporter (DAT) density in the caudate-putamen (CPu) and nucleus accumbens, whereas HPLC analysis revealed increases in the DA metabolite homovanillic acid in the CPu. Our results suggest that AMPH pre-treatment alters DAergic responsivity, a change that can be detected with phMRI in rats. These phMRI changes likely reflect increased DA release together with reduced DAT binding. The ability to assess subtle synaptic changes using phMRI is promising for both preclinical studies of drug discovery, and for clinical studies where phMRI can be a useful tool to non-invasively investigate DA abnormalities, e.g. in neuropsychiatric disorders.


Subject(s)
Brain/drug effects , Central Nervous System Stimulants/pharmacology , Dextroamphetamine/pharmacology , Dopamine/metabolism , Methylphenidate/pharmacology , Animals , Brain/metabolism , Central Nervous System Stimulants/adverse effects , Chromatography, High Pressure Liquid , Corpus Striatum/metabolism , Dextroamphetamine/adverse effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Dopaminergic Neurons/drug effects , Drug Administration Schedule , Glial Fibrillary Acidic Protein/metabolism , Hemodynamics , Immunohistochemistry , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism
6.
Metab Brain Dis ; 32(1): 77-86, 2017 02.
Article in English | MEDLINE | ID: mdl-27488112

ABSTRACT

The presence of overt hepatic encephalopathy (HE) is associated with structural, metabolic and functional changes in the brain discernible by use of a variety of magnetic resonance (MR) techniques. The changes in patients with minimal HE are less well documented. Twenty-two patients with well-compensated cirrhosis, seven of whom had minimal HE, were examined with cerebral 3 Tesla MR techniques, including T1- and T2-weighted, magnetization transfer and diffusion-weighted imaging and proton magnetic resonance spectroscopy sequences. Studies were repeated after a 4-week course of oral L-ornithine L-aspartate (LOLA). Results were compared with data obtained from 22 aged-matched healthy controls. There was no difference in mean total brain volume between patients and controls at baseline. Mean cerebral magnetization transfer ratios were significantly reduced in the globus pallidus and thalamus in the patients with cirrhosis irrespective of neuropsychiatric status; the mean ratio was significantly reduced in the frontal white matter in patients with minimal HE compared with healthy controls but not when compared with their unimpaired counterparts. There were no significant differences in either the median apparent diffusion coefficients or the mean fractional anisotropy, calculated from the diffusion-weighted imaging, or in the mean basal ganglia metabolite ratios between patients and controls. Psychometric performance improved in 50 % of patients with minimal HE following LOLA, but no significant changes were observed in brain volumes, cerebral magnetization transfer ratios, the diffusion weighted imaging variables or the cerebral metabolite ratios. MR variables, as applied in this study, do not identify patients with minimal HE, nor do they reflect changes in psychometric performance following LOLA.


Subject(s)
Brain/diagnostic imaging , Dipeptides/therapeutic use , Hepatic Encephalopathy/drug therapy , Liver Cirrhosis/drug therapy , Adult , Aged , Cognition/physiology , Diffusion Magnetic Resonance Imaging , Female , Hepatic Encephalopathy/diagnostic imaging , Humans , Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Psychometrics
7.
Thromb Haemost ; 116(1): 181-90, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27075869

ABSTRACT

Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.


Subject(s)
Arteries/drug effects , Arteritis/prevention & control , Benzazepines/pharmacology , Heart Rate/drug effects , Animals , Arteries/physiology , Arteritis/physiopathology , Biomechanical Phenomena , Cardiovascular Agents/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heart Rate/physiology , Human Umbilical Vein Endothelial Cells , Humans , Hypercholesterolemia/complications , Hypercholesterolemia/drug therapy , Hypercholesterolemia/physiopathology , Ivabradine , Kruppel-Like Factor 4 , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Stress, Mechanical , Vascular Cell Adhesion Molecule-1/metabolism
8.
Angew Chem Int Ed Engl ; 53(36): 9550-4, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25045009

ABSTRACT

MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper-free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self-assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4-targeted peptide ligands were synthesized and characterized. The IONPs were tested in vitro and T2 signal enhancements of around 160 % were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor-bearing mice demonstrated the signal-enhancing ability of these 'smart' self-assembling nanomaterials.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Matrix Metalloproteinases/drug effects , Receptors, CXCR4/drug effects , Alkynes/chemistry , Animals , Azides/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/pathology
9.
J Mater Chem B ; 2(7): 868-876, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-32261318

ABSTRACT

As magnetic resonance imaging (MRI) contrast agents, T1 Gd3+ chelates are generally the preferred option for radiologists over T2 iron oxide nanoparticles. The main reason for the popularity of T1 agents is the easier interpretation of T1-weighted MR images. However, the chemical versatility of nanoparticulate platforms makes them ideal candidates for the next generation of targeted MRI contrast agents. In this context, we present herein the design and preparation of a nanoparticulate contrast agent based on MnO, which presents T1 contrast enhancement properties as well as nanoparticle formulation. Functionalization of MnO nanoparticles with the extensively studied RGD peptide was used to target tumours over-expressing the αvß3 integrin. PEG (polyethylene glycol) molecules were used to increase the blood half-life of the nanoparticles in vivo, and the effect of different PEG lengths on the final contrast on MR images was investigated.

10.
Proc Natl Acad Sci U S A ; 110(3): 832-41, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23277546

ABSTRACT

The blood-brain barrier (BBB), a critical guardian of communication between the periphery and the brain, is frequently compromised in neurological diseases such as multiple sclerosis (MS), resulting in the inappropriate passage of molecules and leukocytes into the brain. Here we show that the glucocorticoid anti-inflammatory messenger annexin A1 (ANXA1) is expressed in brain microvascular endothelial cells, where it regulates BBB integrity. In particular, ANXA1(-/-) mice exhibit significantly increased BBB permeability as a result of disrupted interendothelial cell tight junctions, essentially related to changes in the actin cytoskeleton, which stabilizes tight and adherens junctions. This situation is reminiscent of early MS pathology, a relationship confirmed by our detection of a selective loss of ANXA1 in the plasma and cerebrovascular endothelium of patients with MS. Importantly, this loss is swiftly restored by i.v. administration of human recombinant ANXA1. Analysis in vitro confirms that treatment of cerebrovascular endothelial cells with recombinant ANXA1 restores cell polarity, cytoskeleton integrity, and paracellular permeability through inhibition of the small G protein RhoA. We thus propose ANXA1 as a critical physiological regulator of BBB integrity and suggest it may have utility in the treatment of MS, correcting BBB function and hence ameliorating disease.


Subject(s)
Annexin A1/physiology , Blood-Brain Barrier/physiology , Actin Cytoskeleton/physiology , Adherens Junctions/pathology , Adherens Junctions/physiology , Adult , Aged , Animals , Annexin A1/antagonists & inhibitors , Annexin A1/deficiency , Annexin A1/genetics , Annexin A1/pharmacology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Capillary Permeability/physiology , Cell Line , Endothelial Cells/pathology , Endothelial Cells/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microvessels/pathology , Microvessels/physiopathology , Middle Aged , Models, Neurological , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathology , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Tight Junction Proteins/physiology , rhoA GTP-Binding Protein/metabolism
11.
Chem Commun (Camb) ; 49(6): 564-6, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23208551

ABSTRACT

Formyl Peptide Receptors (FPRs) are vital in the host inflammatory response, playing an important regulatory role in multiple diseases. A Gd(III) DOTA conjugate of cFLFLFK has been synthesised which targets and visualises FPR1 upon leukocytes in the inflammatory response via magnetic resonance imaging for the first time.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Oligopeptides/chemistry , Receptors, Formyl Peptide/metabolism , Amino Acid Sequence , Animals , Brain/diagnostic imaging , Coordination Complexes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Inflammation/metabolism , Inflammation/pathology , Ions/chemistry , Leukocytes/metabolism , Magnetic Resonance Imaging , Mice , Oligopeptides/metabolism , Protein Binding , Radiography , Receptors, Formyl Peptide/chemistry
12.
Psychopharmacology (Berl) ; 221(2): 329-39, 2012 May.
Article in English | MEDLINE | ID: mdl-22205158

ABSTRACT

RATIONALE: Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are increasingly used for the treatment of depression in children. Limited data are, however, available on their effects on brain development and their efficacy remains debated. Moreover, previous experimental studies are seriously hampered in their clinical relevance. OBJECTIVES: The aim of the present study was to investigate putative age-related effects of a chronic treatment with fluoxetine (5 mg/kg, either orally or i.p. for 3 weeks, 1 week washout) using conventional methods (behavioral testing and binding assay using [(123)I]ß-CIT) and a novel magnetic resonance imaging (MRI) approach. METHODS: Behavior was assessed, as well as serotonin transporter (SERT) availability and function through ex vivo binding assays and in vivo pharmacological MRI (phMRI) with an acute fluoxetine challenge (10 mg/kg oral or 5 mg/kg i.v.) in adolescent and adult rats. RESULTS: Fluoxetine caused an increase in anxiety-like behavior in treated adult, but not adolescent, rats. On the binding assays, we observed increased SERT densities in most cortical brain regions and hypothalamus in adolescent, but not adult, treated rats. Finally, reductions in brain activation were observed with phMRI following treatment, in both adult and adolescent treated animals. CONCLUSION: Collectively, our data indicate that the short-term effects of fluoxetine on the 5-HT system may be age-dependent. These findings could reflect structural and functional rearrangements in the developing brain that do not occur in the matured rat brain. phMRI possibly will be well suited to study this important issue in the pediatric population.


Subject(s)
Behavior, Animal/drug effects , Fluoxetine/pharmacology , Magnetic Resonance Imaging/methods , Selective Serotonin Reuptake Inhibitors/pharmacology , Administration, Oral , Age Factors , Animals , Cerebral Cortex/metabolism , Fluoxetine/administration & dosage , Hypothalamus/metabolism , Injections, Intraperitoneal , Male , Rats , Rats, Wistar , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/administration & dosage
13.
Appl Opt ; 50(36): 6583-90, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22193187

ABSTRACT

We describe a new light transport model, which was applied to three-dimensional lifetime imaging of Förster resonance energy transfer in mice in vivo. The model is an approximation to the radiative transfer equation and combines light diffusion and ray optics. This approximation is well adopted to wide-field time-gated intensity-based data acquisition. Reconstructed image data are presented and compared with results obtained by using the telegraph equation approximation. The new approach provides improved recovery of absorption and scattering parameters while returning similar values for the fluorescence parameters.


Subject(s)
Algorithms , Fluorescence Resonance Energy Transfer/methods , Optics and Photonics/methods , Animals , Fluorescence , Imaging, Three-Dimensional/methods , Mice , Models, Theoretical , Scattering, Radiation , Tomography, Optical/methods
14.
Biomed Opt Express ; 2(7): 1907-17, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21750768

ABSTRACT

Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a tomographic imaging system and applying inverse scattering algorithms, we can reconstruct the three dimensional spatial localization of fluorescence quantum efficiency and lifetime. We demonstrate in vivo spatial mapping of FRET between genetically expressed fluorescent proteins in live mice read out using FLIM. Following transfection by electroporation, mouse hind leg muscles were imaged in vivo and the emission of free donor (eGFP) in the presence of free acceptor (mCherry) could be clearly distinguished from the fluorescence of the donor when directly linked to the acceptor in a tandem (eGFP-mCherry) FRET construct.

15.
EJNMMI Res ; 1(1): 11, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-22214535

ABSTRACT

Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy.

16.
Radiology ; 247(2): 550-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18349314

ABSTRACT

Research ethics committee approval was obtained for this study, and written informed consent was obtained from all participants. The purpose was to prospectively evaluate the feasibility of breath-hold multiecho in- and out-of-phase magnetic resonance (MR) imaging for simultaneous lipid quantification and T2* measurement. A spoiled gradient-echo sequence with seven echo times alternately in phase and out of phase was used at 3.0 T. Imaging was performed in a lipid phantom, in five healthy volunteers (all men; mean age, 37 years), and in five obese individuals with hyperlipidemia or diabetes (four men, one woman; mean age, 53 years). A biexponential curve-fitting model was used to derive the relative signal contributions from fat and water, and these results were compared with results of liver proton MR spectroscopy, the reference standard. There was a significant correlation between multiecho and spectroscopic measurements of hepatic lipid concentration (r(2) = 0.99, P < .001). In vivo, the T2* of water was consistently longer than that of fat and reliably enabled the signal components to be correctly assigned. In the lipid phantom, the multiecho method could be used to determine the fat-to-water ratio and the T2* values of fat and water throughout the entire range of fat concentrations. Multiecho imaging shows promise as a method of simultaneous fat and T2* quantification.


Subject(s)
Fatty Liver/diagnosis , Magnetic Resonance Imaging/methods , Adult , Aged , Feasibility Studies , Female , Humans , Image Interpretation, Computer-Assisted , Least-Squares Analysis , Male , Middle Aged , Phantoms, Imaging , Prospective Studies , Sensitivity and Specificity
17.
Ann Neurol ; 52(5): 650-3, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12402265

ABSTRACT

Multiple sclerosis is still regarded primarily as a disease of the white matter. However, recent evidence suggests that there may be significant involvement of gray matter. Here, we have used magnetic resonance imaging and magnetic resonance spectroscopy in vivo and histopathology postmortem to estimate thalamic neuronal loss in patients with multiple sclerosis. Our results show that neuronal loss in multiple sclerosis can be substantial (30-35% reduction). We conclude that a neurodegenerative pathology may make a major contribution to the genesis of symptoms in multiple sclerosis.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Multiple Sclerosis, Chronic Progressive/diagnosis , Nerve Degeneration/diagnosis , Thalamus/pathology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/pathology , Nerve Degeneration/pathology
SELECTION OF CITATIONS
SEARCH DETAIL