Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Proteome Res ; 23(5): 1547-1558, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38619923

ABSTRACT

Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.


Subject(s)
Circadian Rhythm , Inflammation , Insulin , Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/metabolism , Insulin/metabolism , Insulin/blood , Inflammation/metabolism , Inflammation/blood , Male , Adult , Shift Work Schedule , Female , Proteomics/methods , Blood Glucose/metabolism , Signal Transduction , Insulin Resistance , Young Adult
2.
Brain ; 146(11): 4766-4783, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37437211

ABSTRACT

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


Subject(s)
Signal Transduction , TOR Serine-Threonine Kinases , Humans , Animals , Mice , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , Brain/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Cognition , Microfilament Proteins/genetics
3.
Front Cell Dev Biol ; 10: 1023340, 2022.
Article in English | MEDLINE | ID: mdl-36684426

ABSTRACT

Efficient and effective methods for converting human induced pluripotent stem cells into differentiated derivatives are critical for performing robust, large-scale studies of development and disease modelling, and for providing a source of cells for regenerative medicine. Here, we describe a 14-day neural differentiation protocol which allows for the scalable, simultaneous differentiation of multiple iPSC lines into cortical neural stem cells We currently employ this protocol to differentiate and compare sets of engineered iPSC lines carrying loss of function alleles in developmental disorder associated genes, alongside isogenic wildtype controls. Using RNA sequencing (RNA-Seq), we can examine the changes in gene expression brought about by each disease gene knockout, to determine its impact on neural development and explore mechanisms of disease. The 10-day Neural Induction period uses the well established dual-SMAD inhibition approach combined with Wnt/ß-Catenin inhibition to selectively induce formation of cortical NSCs. This is followed by a 4-day Neural Maintenance period facilitating NSC expansion and rosette formation, and NSC cryopreservation. We also describe methods for thawing and passaging the cryopreserved NSCs, which are useful in confirming their viability for further culture. Routine implementation of immunocytochemistry Quality Control confirms the presence of PAX6-positive and/or FOXG1-positive NSCs and the absence of OCT4-positive iPSCs after differentiation. RNA-Seq, flow cytometry, immunocytochemistry (ICC) and RT-qPCR provide additional confirmation of robust presence of NSC markers in the differentiated cells. The broader utility and application of our protocol is demonstrated by the successful differentiation of wildtype iPSC lines from five additional independent donors. This paper thereby describes an efficient method for the production of large numbers of high purity cortical NSCs, which are widely applicable for downstream research into developmental mechanisms, further differentiation into postmitotic cortical neurons, or other applications such as large-scale drug screening experiments.

4.
Cancer Cell ; 39(7): 999-1014.e8, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34171263

ABSTRACT

Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.


Subject(s)
Aniline Compounds/pharmacology , Aurora Kinase B/metabolism , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Pyrazines/pharmacology , Tumor Microenvironment , Aurora Kinase B/genetics , Biomarkers, Tumor/genetics , Exome , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Metabolome , Protein Kinase Inhibitors/pharmacology , Proteome , Tumor Cells, Cultured
5.
J Pineal Res ; 70(3): e12726, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33638890

ABSTRACT

Circadian disruption has been identified as a risk factor for health disorders such as obesity, cardiovascular disease, and cancer. Although epidemiological studies suggest an increased risk of various cancers associated with circadian misalignment due to night shift work, the underlying mechanisms have yet to be elucidated. We sought to investigate the potential mechanistic role that circadian disruption of cancer hallmark pathway genes may play in the increased cancer risk in shift workers. In a controlled laboratory study, we investigated the circadian transcriptome of cancer hallmark pathway genes and associated biological pathways in circulating leukocytes obtained from healthy young adults during a 24-hour constant routine protocol following 3 days of simulated day shift or night shift. The simulated night shift schedule significantly altered the normal circadian rhythmicity of genes involved in cancer hallmark pathways. A DNA repair pathway showed significant enrichment of rhythmic genes following the simulated day shift schedule, but not following the simulated night shift schedule. In functional assessments, we demonstrated that there was an increased sensitivity to both endogenous and exogenous sources of DNA damage after exposure to simulated night shift. Our results suggest that circadian dysregulation of DNA repair may increase DNA damage and potentiate elevated cancer risk in night shift workers.


Subject(s)
Biomarkers, Tumor/genetics , Chronobiology Disorders/etiology , Circadian Rhythm , DNA Damage , DNA Repair , Neoplasms/etiology , Shift Work Schedule/adverse effects , Transcriptome , Activity Cycles , Adult , Chronobiology Disorders/genetics , Chronobiology Disorders/physiopathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasms/genetics , Neoplasms/pathology , Risk Assessment , Risk Factors , Sleep , Time Factors , Young Adult
7.
Cell Rep Med ; 1(1)2020 04 21.
Article in English | MEDLINE | ID: mdl-32529193

ABSTRACT

In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials.


Subject(s)
Chromosomal Instability/physiology , Cystadenocarcinoma, Serous , DNA Replication/genetics , Ovarian Neoplasms , Phosphotransferases/genetics , Adult , Aged , Aged, 80 and over , Cell Cycle Checkpoints/genetics , Cohort Studies , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/mortality , DNA Damage , Fallopian Tube Neoplasms/genetics , Fallopian Tube Neoplasms/metabolism , Fallopian Tube Neoplasms/mortality , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Mitosis/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/mortality , Phosphotransferases/metabolism , Proteogenomics , Transcriptome , Tumor Suppressor Protein p53/genetics
8.
Mol Cell Proteomics ; 18(8 suppl 1): S26-S36, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31227600

ABSTRACT

Phosphorylation of proteins is a key way cells regulate function, both at the individual protein level and at the level of signaling pathways. Kinases are responsible for phosphorylation of substrates, generally on serine, threonine, or tyrosine residues. Though particular sequence patterns can be identified that dictate whether a residue will be phosphorylated by a specific kinase, these patterns are not highly predictive of phosphorylation. The availability of large scale proteomic and phosphoproteomic data sets generated using mass-spectrometry-based approaches provides an opportunity to study the important relationship between kinase activity, substrate specificity, and phosphorylation. In this study, we analyze relationships between protein abundance and phosphopeptide abundance across more than 150 tumor samples and show that phosphorylation at specific phosphosites is not well correlated with overall kinase abundance. However, individual kinases show a clear and statistically significant difference in correlation among known phosphosite targets for that kinase and randomly selected phosphosites. We further investigate relationships between phosphorylation of known activating or inhibitory sites on kinases and phosphorylation of their target phosphosites. Combined with motif-based analysis, this approach can predict novel kinase targets and show which subsets of a kinase's target repertoire are specifically active in one condition versus another.


Subject(s)
Phosphoproteins/metabolism , Protein Kinases/metabolism , Humans , Neoplasms/metabolism , Phosphorylation , Proteomics
9.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031003

ABSTRACT

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
10.
Article in English | MEDLINE | ID: mdl-29610098

ABSTRACT

New de novo transcriptome assembly and annotation methods provide an incredible opportunity to study the transcriptome of organisms that lack an assembled and annotated genome. There are currently a number of de novo transcriptome assembly methods, but it has been difficult to evaluate the quality of these assemblies. In order to assess the quality of the transcriptome assemblies, we composed a workflow of multiple quality check measurements that in combination provide a clear evaluation of the assembly performance. We presented novel transcriptome assemblies and functional annotations for Pacific Whiteleg Shrimp (Litopenaeus vannamei ), a mariculture species with great national and international interest, and no solid transcriptome/genome reference. We examined Pacific Whiteleg transcriptome assemblies via multiple metrics, and provide an improved gene annotation. Our investigations show that assessing the quality of an assembly purely based on the assembler's statistical measurements can be misleading; we propose a hybrid approach that consists of statistical quality checks and further biological-based evaluations.


Subject(s)
Computational Biology/methods , Exome Sequencing/methods , Transcriptome/genetics , Algorithms , Animals , Penaeidae/genetics
11.
IEEE J Biomed Health Inform ; 20(1): 399-407, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25389247

ABSTRACT

The uncontrolled cell proliferation that is characteristically associated with cancer is usually accompanied by alterations in the genome and cell metabolism. Indeed, the phenomenon of cancer cells metabolizing glucose using a less efficient anaerobic process even in the presence of normal oxygen levels, termed the Warburg effect, is currently considered to be one of the hallmarks of cancer. Diabetes, much like cancer, is defined by significant metabolic changes. Recent epidemiological studies have shown that diabetes patients treated with the antidiabetic drug Metformin have significantly lowered risk of cancer as compared to patients treated with other antidiabetic drugs. We utilize a Boolean logic model of the pathways commonly mutated in cancer to not only investigate the efficacy of Metformin for cancer therapeutic purposes but also demonstrate how Metformin in concert with other cancer drugs could provide better and less toxic clinical outcomes as compared to using cancer drugs alone.


Subject(s)
Antineoplastic Agents/pharmacology , Diabetes Mellitus, Type 2 , Gene Regulatory Networks/drug effects , Hypoglycemic Agents/pharmacology , Neoplasms , Antineoplastic Agents/therapeutic use , Computational Biology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gene Regulatory Networks/genetics , Humans , Hypoglycemic Agents/therapeutic use , Metformin/pharmacology , Metformin/therapeutic use , Models, Theoretical , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...