Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12936, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839826

ABSTRACT

Circadian rhythms are endogenous oscillations in nearly all organisms, from prokaryotes to humans, allowing them to adapt to cyclical environments for close to 24 h. Circadian rhythms are regulated by a central clock, based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematode Caenorhabditis elegans, period and casein kinase 1ε/δ are conserved as lin-42 and kin-20, respectively. Here, we studied the involvement of lin-42 and kin-20 in the circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and epidermal seam cells, as well as in other cells. Depletion of LIN-42 and KIN-20, specifically in neuronal cells after development, was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Circadian Rhythm , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Gene Expression Regulation , Mutation , Neurons/metabolism , Transcription Factors
2.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766223

ABSTRACT

The mammalian PAS-domain protein PERIOD (PER) and its C. elegans orthologue LIN-42 have been proposed to constitute an evolutionary link between two distinct, circadian and developmental, timing systems. However, while the function of PER in animal circadian rhythms is well understood molecularly and mechanistically, this is not true for the function of LIN-42 in timing rhythmic development. Here, using targeted deletions, we find that the LIN-42 PAS domains are dispensable for the protein's function in timing molts. Instead, we observe arrhythmic molts upon deletion of a distinct sequence element, conserved with PER. We show that this element mediates stable binding to KIN-20, the C. elegans CK1δ/ε orthologue. We demonstrate that CK1δ phosphorylates LIN-42 and define two conserved helical motifs, CK1δ-binding domain A (CK1BD-A) and CK1BD-B, that have distinct roles in controlling CK1δ-binding and kinase activity in vitro. KIN-20 and the LIN-42 CK1BD are required for proper molting timing in vivo. These interactions mirror the central role of a stable circadian PER-CK1 complex in setting a robust ~24-hour period. Hence, our results establish LIN-42/PER - KIN-20/CK1δ/ε as a functionally conserved signaling module of two distinct chronobiological systems.

3.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38105938

ABSTRACT

Circadian rhythms are endogenous oscillations present in nearly all organisms from prokaryotes to humans, allowing them to adapt to cyclical environments close to 24 hours. Circadian rhythms are regulated by a central clock, which is based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1 ε/δ (CK1 ε/δ ) phosphorylation. In the nematode Caenorhabditis elegans , period and casein kinase 1ε/δ are conserved as lin-42 and kin-20 , respectively. Here we studied the involvement of lin-42 and kin-20 in circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and seam cells, a population of epidermal stem cells in C. elegans that undergo multiple divisions during development. Depletion of LIN-42 and KIN-20 specifically in neuronal cells after development was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.

4.
Genetics ; 217(3)2021 03 31.
Article in English | MEDLINE | ID: mdl-33677541

ABSTRACT

The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion.


Subject(s)
Arabidopsis Proteins/genetics , Caenorhabditis elegans/genetics , F-Box Proteins/genetics , Genetic Engineering/methods , Indoleacetic Acids/metabolism , Proteolysis , Receptors, Cell Surface/genetics , Animals , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , CRISPR-Cas Systems , Caenorhabditis elegans Proteins/metabolism , F-Box Proteins/chemistry , F-Box Proteins/metabolism , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Organ Specificity , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL