Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Funct ; 42(6): e4102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39076066

ABSTRACT

GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of ß-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of ß-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.


Subject(s)
CRISPR-Cas Systems , Gangliosidosis, GM1 , Humans , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/genetics , Neurons/metabolism , Gene Knockout Techniques , Models, Biological
2.
Front Oncol ; 14: 1355064, 2024.
Article in English | MEDLINE | ID: mdl-38559560

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is among the most penetrative malignancies affecting humans, with mounting incidence prevalence worldwide. This cancer is usually not diagnosed in the early stages. There is also no effective therapy against PDAC, and most patients have chemo-resistance. The combination of these factors causes PDAC to have a poor prognosis, and often patients do not live longer than six months. Because of the failure of conventional therapies, the identification of key biomarkers is crucial in the early diagnosis, treatment, and prognosis of pancreatic cancer. 65% of the human genome encodes ncRNAs. There are different types of ncRNAs that are classified based on their sequence lengths and functions. They play a vital role in replication, transcription, translation, and epigenetic regulation. They also participate in some cellular processes, such as proliferation, differentiation, metabolism, and apoptosis. The roles of ncRNAs as tumor suppressors or oncogenes in the growth of tumors in a variety of tissues, including the pancreas, have been demonstrated in several studies. This study discusses the key roles of some lncRNAs and miRNAs in the growth and advancement of pancreatic carcinoma. Because they are involved not only in the premature identification, chemo-resistance and prognostication, also their roles as potential biomarkers for better management of PDAC patients.

3.
Front Pharmacol ; 15: 1339580, 2024.
Article in English | MEDLINE | ID: mdl-38333005

ABSTRACT

In recent decades, scholarly investigations have predominantly centered on nanomaterials possessing enzyme-like characteristics, commonly referred to as nanozymes. These nanozymes have emerged as viable substitutes for natural enzymes, offering simplicity, stability, and superior performance across various applications. Inorganic nanoparticles have been extensively employed in the emulation of enzymatic activity found in natural systems. Nanoparticles have shown a strong ability to mimic a number of enzyme-like functions. These systems have made a lot of progress thanks to the huge growth in nanotechnology research and the unique properties of nanomaterials. Our presentation will center on the kinetics, processes, and applications of peroxidase-like nanozymes. In this discourse, we will explore the various characteristics that exert an influence on the catalytic activity of nanozymes, with a particular emphasis on the prevailing problems and prospective consequences. This paper presents a thorough examination of the latest advancements achieved in the domain of peroxidase mimetic nanozymes in the context of cancer diagnosis and treatment. The primary focus is on their use in catalytic cancer therapy, alongside chemotherapy, phototherapy, sonodynamic therapy, radiation, and immunotherapy. The primary objective of this work is to offer theoretical and technical assistance for the prospective advancement of anticancer medications based on nanozymes. Moreover, it is anticipated that this will foster the investigation of novel therapeutic strategies aimed at achieving efficacious tumor therapy.

4.
Front Med Technol ; 5: 1330007, 2023.
Article in English | MEDLINE | ID: mdl-38323112

ABSTRACT

The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.

SELECTION OF CITATIONS
SEARCH DETAIL