Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Diabetes ; 68(7): 1394-1402, 2019 07.
Article in English | MEDLINE | ID: mdl-31127054

ABSTRACT

Type 1 diabetes risk can reliably be predicted by markers of autoimmunity, but approaches to prevent or modify the underlying disease process are needed. We posit this void fundamentally results from a limited understanding of immune-islet cell interactions within the pancreas and relevant immune organs, contributions of ß-cells to their own demise, and epigenetic predispositions affecting both immune and islet cells. Because biopsy of the human pancreas and pancreatic lymph nodes carries risk and the pancreas begins to autodigest soon after death, detailed cellular and molecular phenotyping of the human type 1 diabetes pancreas is lacking, limiting our understanding of the mechanisms of ß-cell loss. To address these challenges, the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases established the Human Pancreas Analysis Program (HPAP) to procure human type 1 diabetes pancreata for an extensive array of tissue-based, cellular, and epigenetic assays aimed at critical knowledge gaps in our understanding of the local immune attack and loss of ß-cells. In this Methodology Review, we describe how HPAP is performing detailed islet and immune cell phenotyping and creating publicly available data sets with the goals of an improved understanding of type 1 diabetes and the development of more effective treatments to prevent or reverse the disease.


Subject(s)
Autoimmunity/immunology , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/immunology , Insulin/metabolism , Pancreas/immunology , Diabetes Mellitus, Type 1/metabolism , Humans , Insulin-Secreting Cells/metabolism , National Institutes of Health (U.S.) , Pancreas/metabolism , United States
2.
Diabetes ; 67(4): 697-703, 2018 04.
Article in English | MEDLINE | ID: mdl-29343548

ABSTRACT

Although B cells reactive with islet autoantigens are silenced by tolerance mechanisms in healthy individuals, they can become activated and contribute to the development of type 1 diabetes. We previously demonstrated that high-affinity insulin-binding B cells (IBCs) occur exclusively in the anergic (BND) compartment in peripheral blood of healthy subjects. Consistent with their activation early in disease development, high-affinity IBCs are absent from the BND compartment of some first-degree relatives (FDRs) as well as all patients with autoantibody-positive prediabetes and new-onset type 1 diabetes, a time when they are found in pancreatic islets. Loss of BND IBCs is associated with a loss of the entire BND B-cell compartment consistent with provocation by an environmental trigger or predisposing genetic factors. To investigate potential mechanisms operative in subversion of B-cell tolerance, we explored associations between HLA and non-HLA type 1 diabetes-associated risk allele genotypes and loss of BNDs in FDRs. We found that high-risk HLA alleles and a subset of non-HLA risk alleles (i.e., PTPN2 [rs1893217], INS [rs689], and IKZF3 [rs2872507]), relevant to B- and T-cell development and function are associated with loss of anergy. Hence, the results suggest a role for risk-conferring alleles in perturbation of B-cell anergy during development of type 1 diabetes.


Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Clonal Anergy/immunology , Diabetes Mellitus, Type 1/immunology , Prediabetic State/immunology , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Humans , Ikaros Transcription Factor/genetics , Insulin/genetics , Islets of Langerhans , Prediabetic State/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
3.
Diabetes ; 66(3): 722-734, 2017 03.
Article in English | MEDLINE | ID: mdl-27920090

ABSTRACT

Type 1 diabetes results from chronic autoimmune destruction of insulin-producing ß-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19-35, and two clones from separate donors responded to insulin B-chain amino acids 9-23 (B:9-23), which are known to be a critical self-antigen-driving disease progress in animal models of autoimmune diabetes. These B:9-23-specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9-23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment.


Subject(s)
Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Insulin/immunology , Islets of Langerhans/immunology , Peptide Fragments/immunology , Proinsulin/immunology , Protein Precursors/immunology , Receptors, Antigen, T-Cell/immunology , Adolescent , C-Peptide/immunology , Child , Female , HLA-DQ Antigens/immunology , HLA-DR Antigens/immunology , Humans , Insulin-Secreting Cells , Islets of Langerhans/cytology , Islets of Langerhans/pathology , Receptors, Antigen, T-Cell/genetics , Young Adult
4.
Diabetes ; 65(5): 1310-6, 2016 05.
Article in English | MEDLINE | ID: mdl-26718498

ABSTRACT

There is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet ß-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D. Predicated on prior studies, this consortium conducted coordinated, prospective studies, using joint standard operating procedures, fixed criteria for study entry, and common reagents, to optimize combined anti-CD3 treatment plus interleukin-1 (IL-1) blockade to reverse new-onset disease in NOD mice. We did not find that IL-1 blockade with anti-IL-1ß monoclonal antibody or IL-1trap provided additional benefit for reversing new-onset disease compared with anti-CD3 treatment alone. These results demonstrate the value of larger, multicenter preclinical studies for vetting and prioritizing therapeutics for future clinical use.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Autoimmune Diseases/drug therapy , CD3 Complex/chemistry , Diabetes Mellitus, Type 1/drug therapy , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Interleukin-1beta/antagonists & inhibitors , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Biomedical Research/methods , CD3 Complex/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Drug Administration Schedule , Drug Therapy, Combination , Female , Immunoglobulin Fab Fragments/administration & dosage , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/therapeutic use , Immunotherapy/methods , Insulin Secretion , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Interleukin-1 Receptor Accessory Protein/antagonists & inhibitors , Interleukin-1 Receptor Accessory Protein/metabolism , Interleukin-1beta/metabolism , Mice, Inbred NOD , Multicenter Studies as Topic , Pilot Projects , Receptors, Interleukin-1 Type I/antagonists & inhibitors , Receptors, Interleukin-1 Type I/metabolism , Recombinant Fusion Proteins/therapeutic use , Reproducibility of Results , Research Design , Specific Pathogen-Free Organisms , United States
5.
J Pediatr ; 144(5): 684-5, 2004 May.
Article in English | MEDLINE | ID: mdl-15152374
SELECTION OF CITATIONS
SEARCH DETAIL