Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 13(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37708408

ABSTRACT

Genome-wide association studies have identified sequence polymorphisms in a functional enhancer of the NOS1AP gene as the most common genetic regulator of QT interval and human cardiac NOS1AP gene expression in the general population. Functional studies based on in vitro overexpression in murine cardiomyocytes and ex vivo knockdown in zebrafish embryonic hearts, by us and others, have also demonstrated that NOS1AP expression levels can alter cellular electrophysiology. Here, to explore the role of NOS1AP in cardiac electrophysiology at an organismal level, we generated and characterized constitutive and heart muscle-restricted Nos1ap knockout mice to assess whether NOS1AP disruption alters the QT interval in vivo. Constitutive loss of Nos1ap led to genetic background-dependent variable lethality at or right before birth. Heart muscle-restricted Nos1ap knockout, generated using cardiac-specific alpha-myosin heavy chain promoter-driven tamoxifen-inducible Cre, resulted in tissue-level Nos1ap expression reduced by half. This partial loss of expression had no detectable effect on the QT interval or other electrocardiographic and echocardiographic parameters, except for a small but significant reduction in the QRS interval. Given that challenges associated with defining the end of the T wave on murine electrocardiogram can limit identification of subtle effects on the QT interval and that common noncoding NOS1AP variants are also associated with the QRS interval, our findings support the role of NOS1AP in regulation of the cardiac electrical cycle.


Subject(s)
Genome-Wide Association Study , Zebrafish , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Electrocardiography , Genotype , Myocardium , Polymorphism, Single Nucleotide , Zebrafish/genetics
2.
Proc Natl Acad Sci U S A ; 120(34): e2211986120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37585461

ABSTRACT

The receptor tyrosine kinase RET plays a critical role in the fate specification of enteric neural crest-derived cells (ENCDCs) during enteric nervous system (ENS) development. RET loss of function (LoF) is associated with Hirschsprung disease (HSCR), which is marked by aganglionosis of the gastrointestinal (GI) tract. Although the major phenotypic consequences and the underlying transcriptional changes from Ret LoF in the developing ENS have been described, cell type- and state-specific effects are unknown. We performed single-cell RNA sequencing on an enriched population of ENCDCs from the developing GI tract of Ret null heterozygous and homozygous mice at embryonic day (E)12.5 and E14.5. We demonstrate four significant findings: 1) Ret-expressing ENCDCs are a heterogeneous population comprising ENS progenitors as well as glial- and neuronal-committed cells; 2) neurons committed to a predominantly inhibitory motor neuron developmental trajectory are not produced under Ret LoF, leaving behind a mostly excitatory motor neuron developmental program; 3) expression patterns of HSCR-associated and Ret gene regulatory network genes are impacted by Ret LoF; and 4) Ret deficiency leads to precocious differentiation and reduction in the number of proliferating ENS precursors. Our results support a model in which Ret contributes to multiple distinct cellular phenotypes during development of the ENS, including the specification of inhibitory neuron subtypes, cell cycle dynamics of ENS progenitors, and the developmental timing of neuronal and glial commitment.


Subject(s)
Enteric Nervous System , Hirschsprung Disease , Proto-Oncogene Proteins c-ret , Animals , Mice , Cell Differentiation , Cell Proliferation , Hirschsprung Disease/genetics , Neural Crest , Proto-Oncogene Proteins c-ret/genetics
3.
J Pediatr Surg ; 56(12): 2286-2294, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34006365

ABSTRACT

PURPOSE: Hirschsprung disease (HSCR) is a developmental disorder of the enteric nervous system (ENS) characterized by congenital aganglionosis arising from coding variants in ENS genes causing partial or total loss-of-function. Low-penetrance, common, noncoding variants at RET, SEMA3 and NRG1 loci are also associated with HSCR, with small-to-moderate loss of gene expression mediated through sequence variants in cis-regulatory elements (CRE) as another causal mechanism. Since these latter variants are common, many individuals carry multiple risk variants. However, the extent and combinatorial effects of all putative CRE variants within and across these loci on HSCR is unknown. METHODS: Using 583 HSCR subjects, one of the largest samples of European ancestry studied, and genotyping 56 tag variants, we evaluated association of all common variants overlapping putative gut CREs and fine-mapped causal variants at RET, SEMA3 and NRG1. RESULTS: We demonstrate that 28 and 8 tag variants, several of which are genetically independent, overlap putative-enhancers at the RET and SEMA3 loci, respectively, as well as two fine-mapped tag variants at the NRG1 locus, are significantly associated with HSCR. Importantly, disease risk increases with increasing numbers of risk alleles from multiple variants within and across these loci, varying >25-fold across individuals. CONCLUSION: This increasing allele number-dependent risk, we hypothesize, arises from HSCR-relevant ENS cells sensing the reduced gene expression at multiple ENS genes since their developmental effects are integrated through gene regulatory networks.


Subject(s)
Enteric Nervous System , Hirschsprung Disease , Genetic Predisposition to Disease , Hirschsprung Disease/genetics , Humans , Neuregulin-1/genetics , Proto-Oncogene Proteins c-ret/genetics
4.
Proc Natl Acad Sci U S A ; 116(52): 26697-26708, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31818953

ABSTRACT

The development of the gut from endodermal tissue to an organ with multiple distinct structures and functions occurs over a prolonged time during embryonic days E10.5-E14.5 in the mouse. During this process, one major event is innervation of the gut by enteric neural crest cells (ENCCs) to establish the enteric nervous system (ENS). To understand the molecular processes underpinning gut and ENS development, we generated RNA-sequencing profiles from wild-type mouse guts at E10.5, E12.5, and E14.5 from both sexes. We also generated these profiles from homozygous Ret null embryos, a model for Hirschsprung disease (HSCR), in which the ENS is absent. These data reveal 4 major features: 1) between E10.5 and E14.5 the developmental genetic programs change from expression of major transcription factors and its modifiers to genes controlling tissue (epithelium, muscle, endothelium) specialization; 2) the major effect of Ret is not only on ENCC differentiation to enteric neurons but also on the enteric mesenchyme and epithelium; 3) a muscle genetic program exerts significant effects on ENS development; and 4) sex differences in gut development profiles are minor. The genetic programs identified, and their changes across development, suggest that both cell autonomous and nonautonomous factors, and interactions between the different developing gut tissues, are important for normal ENS development and its disorders.

5.
Hum Mol Genet ; 26(10): 1811-1820, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28334784

ABSTRACT

For most multigenic disorders, clinical manifestation (penetrance) and presentation (expressivity) are likely to be an outcome of genetic interaction between multiple susceptibility genes. Here, using gene knockouts in mice, we evaluated genetic interaction between loss of Ret and loss of Sema3d, two Hirschsprung disease susceptibility genes. We intercrossed Ret and Sema3d double null heterozygotes to generate mice with the nine possible genotypes and assessed survival by counting various genotypes, myenteric plexus presence by acetylcholinesterase staining and embryonic day 12.5 (E12.5) intestine transcriptome by RNA-sequencing. Survival rates of Ret wild-type, null heterozygote and null homozygote mice at E12.5, birth and weaning were not influenced by the genotypes at Sema3d locus and vice versa. Loss of myenteric plexus was observed only in all Ret null homozygotes, irrespective of the genotypes at Sema3d locus, and Sema3d null heterozygote and homozygote mice had normal intestinal innervation. As compared with wild-type mice intestinal gene expression, loss of Ret in null homozygotes led to differential expression of ∼300 genes, whereas loss of Sema3d in null homozygotes had no major consequence and there was no evidence supporting major interaction between the two genes influencing intestine transcriptome. Overall, given the null alleles and phenotypic assays used, we did not find evidence for genetic interaction between Ret and Sema3d affecting survival, presence of myenteric plexus or intestine transcriptome.


Subject(s)
Proto-Oncogene Proteins c-ret/genetics , Semaphorins/genetics , Acetylcholinesterase , Animals , Enteric Nervous System/metabolism , Epistasis, Genetic , Genotype , Heterozygote , Hirschsprung Disease/genetics , Homozygote , Mice , Mice, Knockout , Mutation , Penetrance , Phenotype , Proto-Oncogene Proteins c-ret/metabolism , Semaphorins/metabolism
6.
Cell ; 167(2): 355-368.e10, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27693352

ABSTRACT

Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Gene Regulatory Networks , Hirschsprung Disease/genetics , Proto-Oncogene Proteins c-ret/genetics , Alleles , Animals , Binding Sites , Disease Models, Animal , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Gastrointestinal Tract/embryology , Humans , Mice , Mice, Transgenic , RNA, Untranslated/genetics , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
7.
Nature ; 520(7545): 51-6, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25807484

ABSTRACT

Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from female-enriched multiplex families with severe disease, enhancing the detection of key autism genes in modest numbers of cases. Here we show the use of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated δ-catenin protein (CTNND2) in female-enriched multiplex families and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wild-type and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as female-enriched multiplex families, are of innate value in multifactorial disorders.


Subject(s)
Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain/metabolism , Catenins/deficiency , Catenins/genetics , Animals , Brain/embryology , Catenins/metabolism , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , DNA Copy Number Variations/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Exome/genetics , Female , Gene Expression , Gene Expression Regulation, Developmental , Hippocampus/pathology , Humans , Male , Mice , Models, Genetic , Multifactorial Inheritance/genetics , Mutation, Missense , Nerve Net , Neurons/cytology , Neurons/metabolism , Sex Characteristics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Delta Catenin
8.
Biotechnol Lett ; 36(6): 1179-85, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24563304

ABSTRACT

Polymorphic non-coding variants at the NOS1AP locus have been associated with the common cardiac, metabolic and neurological traits and diseases. Although, in vitro gene targeting-based cellular and biochemical studies have shed some light on NOS1AP function in cardiac and neuronal tissue, to enhance our understanding of NOS1AP function in mammalian physiology and disease, we report the generation of cre recombinase-conditional Nos1ap over-expression transgenic mice (Nos1ap (Tg)). Conditional transgenic mice were generated by the pronuclear injection method and three independent, single-site, multiple copies integration event-based founder lines were selected. For heart-restricted over-expression, Nos1ap (Tg) mice were crossed with Mlc2v-cre and Nos1ap transcript over-expression was observed in left ventricles from Nos1ap (Tg); Mlc2v-cre F1 mice. We believe that with the potential of conditional over-expression, Nos1ap (Tg) mice will be a useful resource in studying NOS1AP function in various tissues under physiological and disease states.


Subject(s)
Adaptor Proteins, Signal Transducing/biosynthesis , Gene Expression , Integrases/metabolism , Mice, Transgenic , Adaptor Proteins, Signal Transducing/genetics , Animals , Crosses, Genetic , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...