Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Nat Commun ; 15(1): 1718, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38409097

Foxo family transcription factors are critically involved in multiple processes, such as metabolism, quiescence, cell survival and cell differentiation. Although continuous, high activity of Foxo transcription factors extends the life span of some species, the involvement of Foxo proteins in mammalian aging remains to be determined. Here, we show that Foxo1 is down-regulated with age in mouse T cells. This down-regulation of Foxo1 in T cells may contribute to the disruption of naive T-cell homeostasis with age, leading to an increase in the number of memory T cells. Foxo1 down-regulation is also associated with the up-regulation of co-inhibitory receptors by memory T cells and exhaustion in aged mice. Using adoptive transfer experiments, we show that the age-dependent down-regulation of Foxo1 in T cells is mediated by T-cell-extrinsic cues, including type 1 interferons. Taken together, our data suggest that type 1 interferon-induced Foxo1 down-regulation is likely to contribute significantly to T-cell dysfunction in aged mice.


Forkhead Transcription Factors , T-Cell Exhaustion , Mice , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Down-Regulation , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Cell Differentiation , Proteins/metabolism , Interferons/metabolism , Mammals/metabolism
2.
Proc Natl Acad Sci U S A ; 120(22): e2302509120, 2023 05 30.
Article En | MEDLINE | ID: mdl-37216549

Upon its mucosal transmission, HIV type 1 (HIV-1) rapidly targets genital antigen-presenting Langerhans cells (LCs), which subsequently transfer infectious virus to CD4+ T cells. We previously described an inhibitory neuroimmune cross talk, whereby calcitonin gene-related peptide (CGRP), a neuropeptide secreted by peripheral pain-sensing nociceptor neurons innervating all mucosal epithelia and associating with LCs, strongly inhibits HIV-1 transfer. As nociceptors secret CGRP following the activation of their Ca2+ ion channel transient receptor potential vanilloid 1 (TRPV1), and as we reported that LCs secret low levels of CGRP, we investigated whether LCs express functional TRPV1. We found that human LCs expressed mRNA and protein of TRPV1, which was functional and induced Ca2+ influx following activation with TRPV1 agonists, including capsaicin (CP). The treatment of LCs with TRPV1 agonists also increased CGRP secretion, reaching its anti-HIV-1 inhibitory concentrations. Accordingly, CP pretreatment significantly inhibited LCs-mediated HIV-1 transfer to CD4+ T cells, which was abrogated by both TRPV1 and CGRP receptor antagonists. Like CGRP, CP-induced inhibition of HIV-1 transfer was mediated via increased CCL3 secretion and HIV-1 degradation. CP also inhibited direct CD4+ T cells HIV-1 infection, but in CGRP-independent manners. Finally, pretreatment of inner foreskin tissue explants with CP markedly increased CGRP and CCL3 secretion, and upon subsequent polarized exposure to HIV-1, inhibited an increase in LC-T cell conjugate formation and consequently T cell infection. Our results reveal that TRPV1 activation in human LCs and CD4+ T cells inhibits mucosal HIV-1 infection, via CGRP-dependent/independent mechanisms. Formulations containing TRPV1 agonists, already approved for pain relief, could hence be useful against HIV-1.


Calcitonin Gene-Related Peptide , HIV Infections , Humans , Calcitonin Gene-Related Peptide/pharmacology , T-Lymphocytes/metabolism , Langerhans Cells/metabolism , Mucous Membrane/metabolism , Capsaicin/pharmacology , Pain/metabolism , HIV Infections/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
3.
Am J Respir Cell Mol Biol ; 68(6): 689-701, 2023 06.
Article En | MEDLINE | ID: mdl-36883953

Clinical observations suggest that the source of primary infection accounts for a major determinant of further nosocomial pneumonia in critically ill patients with sepsis. Here we addressed the impact of primary nonpulmonary or pulmonary septic insults on lung immunity using relevant double-hit animal models. C57BL/6J mice were first subjected to polymicrobial peritonitis induced by cecal ligation and puncture (CLP) or bacterial pneumonia induced by intratracheal challenge with Escherichia coli. Seven days later, postseptic mice received ab intratracheal challenge with Pseudomonas aeruginosa. Compared with controls, post-CLP mice became highly susceptible to P. aeruginosa pneumonia, as demonstrated by defective lung bacterial clearance and increased mortality rate. In contrast, all postpneumonia mice survived the P. aeruginosa challenge and even exhibited improved bacterial clearance. Nonpulmonary and pulmonary sepsis differentially modulated the amounts and some important immune functions of alveolar macrophages. Additionally, we observed a Toll-like receptor 2 (TLR2)-dependent increase in regulatory T cells (Tregs) in lungs from post-CLP mice. Antibody-mediated Treg depletion restored the numbers and functions of alveolar macrophages in post-CLP mice. Furthermore, post-CLP TLR2-deficient mice were found resistant to secondary P. aeruginosa pneumonia. In conclusion, polymicrobial peritonitis and bacterial pneumonia conferred susceptibility or resistance to secondary gram-negative pulmonary infection, respectively. Immune patterns in post-CLP lungs argue for a TLR2-dependent cross-talk between Tregs and alveolar macrophages as an important regulatory mechanism in postseptic lung defense.


Peritonitis , Pneumonia, Bacterial , Sepsis , Animals , Mice , Macrophages, Alveolar , Toll-Like Receptor 2 , Disease Models, Animal , Mice, Inbred C57BL , Lung , Sepsis/complications , Peritonitis/complications
4.
Arthritis Rheumatol ; 74(8): 1387-1398, 2022 08.
Article En | MEDLINE | ID: mdl-35255201

OBJECTIVE: Systemic sclerosis (SSc) is a debilitating autoimmune disease characterized by severe lung outcomes resulting in reduced life expectancy. Fra-2-transgenic mice offer the opportunity to decipher the relationships between the immune system and lung fibrosis. This study was undertaken to investigate whether the Fra-2-transgenic mouse lung phenotype may result from an imbalance between the effector and regulatory arms in the CD4+ T cell compartment. METHODS: We first used multicolor flow cytometry to extensively characterize homeostasis and the phenotype of peripheral CD4+ T cells from Fra-2-transgenic mice and control mice. We then tested different treatments for their effectiveness in restoring CD4+ Treg cell homeostasis, including adoptive transfer of Treg cells and treatment with low-dose interleukin-2 (IL-2). RESULTS: Fra-2-transgenic mice demonstrated a marked decrease in the proportion and absolute number of peripheral Treg cells that preceded accumulation of activated, T helper cell type 2-polarized, CD4+ T cells. This defect in Treg cell homeostasis was derived from a combination of mechanisms including impaired generation of these cells in both the thymus and the periphery. The impaired ability of peripheral conventional CD4+ T cells to produce IL-2 may greatly contribute to Treg cell deficiency in Fra-2-transgenic mice. Notably, adoptive transfer of Treg cells, low-dose IL-2 therapy, or combination therapy changed the phenotype of Fra-2-transgenic mice, resulting in a significant reduction in pulmonary parenchymal fibrosis and vascular remodeling in the lungs. CONCLUSION: Immunotherapies for restoring Treg cell homeostasis could be relevant in SSc. An intervention based on low-dose IL-2 injections, as is already proposed in other autoimmune diseases, could be the most suitable treatment modality for restoring Treg cell homeostasis for future research.


Pulmonary Fibrosis , Scleroderma, Systemic , Animals , CD4-Positive T-Lymphocytes , Disease Models, Animal , Interleukin-2 , Mice , Mice, Transgenic , Pulmonary Fibrosis/metabolism , T-Lymphocytes, Regulatory , Vascular Remodeling
5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article En | MEDLINE | ID: mdl-33766913

CD4+Foxp3+ regulatory T (Treg) cells are central modulators of autoimmune diseases. However, the timing and location of Treg cell-mediated suppression of tissue-specific autoimmunity remain undefined. Here, we addressed these questions by investigating the role of tumor necrosis factor (TNF) receptor 2 (TNFR2) signaling in Treg cells during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We found that TNFR2-expressing Treg cells were critical to suppress EAE at peak disease in the central nervous system but had no impact on T cell priming in lymphoid tissues at disease onset. Mechanistically, TNFR2 signaling maintained functional Treg cells with sustained expression of CTLA-4 and Blimp-1, allowing active suppression of pathogenic T cells in the inflamed central nervous system. This late effect of Treg cells was further confirmed by treating mice with TNF and TNFR2 agonists and antagonists. Our findings show that endogenous Treg cells specifically suppress an autoimmune disease by acting in the target tissue during overt inflammation. Moreover, they bring a mechanistic insight to some of the adverse effects of anti-TNF therapy in patients.


Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Bone Marrow/pathology , CTLA-4 Antigen/metabolism , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Mice , Mice, Knockout , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Positive Regulatory Domain I-Binding Factor 1/metabolism , Receptors, Tumor Necrosis Factor, Type II/agonists , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism
6.
Oncogene ; 40(12): 2243-2257, 2021 03.
Article En | MEDLINE | ID: mdl-33649538

Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein ß-arrestin2 (ß-arr2) regulates tumor suppressor p53 by counteracting Mdm2. ß-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. ß-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. ß-arr2 can be SUMOylated, but no information is available on how SUMO may regulate ß-arr2 nucleocytoplasmic shuttling. While we found ß-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and ß-arr2, via a SUMO interaction motif (SIM), that is required for ß-arr2 cytonuclear trafficking. This SIM promotes association of ß-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective ß-arr2 nuclear entry. Mutation of the SIM inhibits ß-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a ß-arr2 SIM nuclear entry checkpoint, coupled with active ß-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis.


GTPase-Activating Proteins/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-mdm2/genetics , SUMO-1 Protein/genetics , Tumor Suppressor Protein p53/genetics , beta-Arrestin 2/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Humans , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Nuclear Export Signals/genetics , Signal Transduction/genetics , Sumoylation/genetics
7.
Front Immunol ; 9: 2356, 2018.
Article En | MEDLINE | ID: mdl-30374354

In recent years, accumulating evidence suggest that regulatory T cells (Tregs) are of paramount importance for the maintenance of immunological self-tolerance and immune homeostasis, even though they represent only about 5-10% of the peripheral CD4+ T cells in humans. Their key role is indeed supported by the spontaneous development of autoimmune diseases after Tregs depletion in mice. Moreover, there is also a growing literature that investigates possible contribution of Tregs numbers and activity in various autoimmune diseases. The contribution of Tregs in autoimmune disease has opened up a new therapeutic avenue based on restoring a healthy balance between Tregs and effector T-cells, such as Treg-based cellular transfer or low-dose IL-2 modulation. These therapies hold the promise of modulating the immune system without immunosuppression, while several issues regarding efficacy and safety need to be addressed. Systemic sclerosis (SSc) is an orphan connective tissue disease characterized by extensive immune abnormalities but also microvascular injury and fibrosis. Recently, data about the presence and function of Tregs in the pathogenesis of SSc have emerged although they remain scarce so far. First, there is a general agreement in the medical literature with regard to the decreased functional ability of circulating Tregs in SSc. Second the quantification of Tregs in patients have led to contradictory results; although the majority of the studies report reduced frequencies, there are conversely some indications suggesting that in case of disease activity circulating Tregs may increase. This paradoxical situation could be the result of a compensatory, but inefficient, amplification of Tregs in the context of inflammation. Nevertheless, these results must be tempered with regards to the heterogeneity of the studies for the phenotyping of the patients and of the most importance for Tregs definition and activity markers. Therefore, taking into account the appealing developments of Tregs roles in autoimmune diseases, together with preliminary data published in SSc, there is growing interest in deciphering Tregs in SSc, both in humans and mice models, to clarify whether the promises obtained in other autoimmune diseases may also apply to SSc.


Disease Susceptibility , Scleroderma, Systemic/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmunity , Biomarkers , Disease Models, Animal , Humans , Immune Tolerance , Lymphocyte Activation , Lymphocyte Count , Mice , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/therapy , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism
8.
Science ; 360(6394)2018 06 15.
Article En | MEDLINE | ID: mdl-29773669

The majority of patients with pancreatic ductal adenocarcinoma (PDA) develop metastatic disease after resection of their primary tumor. We found that livers from patients and mice with PDA harbor single disseminated cancer cells (DCCs) lacking expression of cytokeratin 19 (CK19) and major histocompatibility complex class I (MHCI). We created a mouse model to determine how these DCCs develop. Intraportal injection of immunogenic PDA cells into preimmunized mice seeded livers only with single, nonreplicating DCCs that were CK19- and MHCI- The DCCs exhibited an endoplasmic reticulum (ER) stress response but paradoxically lacked both inositol-requiring enzyme 1α activation and expression of the spliced form of transcription factor XBP1 (XBP1s). Inducible expression of XBP1s in DCCs, in combination with T cell depletion, stimulated the outgrowth of macrometastatic lesions that expressed CK19 and MHCI. Thus, unresolved ER stress enables DCCs to escape immunity and establish latent metastases.


Carcinoma, Pancreatic Ductal/secondary , Endoplasmic Reticulum Stress/immunology , Liver Neoplasms/secondary , Pancreatic Neoplasms/pathology , Tumor Escape , Animals , Carcinoma, Pancreatic Ductal/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Genes, MHC Class I , Genetic Engineering , Humans , Keratin-19/metabolism , Liver Neoplasms/immunology , Lymphocyte Depletion , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/secondary , Pancreatic Neoplasms/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/immunology , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
9.
Nat Commun ; 9(1): 68, 2018 01 04.
Article En | MEDLINE | ID: mdl-29302034

Despite being implicated in non-lymphoid tissues, non-recirculating T cells may also exist in secondary lymphoid organs (SLO). However, a detailed characterization of this lymphoid-resident T cell pool has not yet been done. Here we show that a substantial proportion of CD4 regulatory (Treg) and memory (Tmem) cells establish long-term residence in the SLOs of specific pathogen-free mice. Of these SLOs, only T cell residence within Peyer's patches is affected by microbiota. Resident CD4 Treg and CD4 Tmem cells from lymph nodes and non-lymphoid tissues share many phenotypic and functional characteristics. The percentage of resident T cells in SLOs increases considerably with age, with S1PR1 downregulation possibly contributing to this altered homeostasis. Our results thus show that T cell residence is not only a hallmark of non-lymphoid tissues, but can be extended to secondary lymphoid organs.


Aging/immunology , Germ-Free Life , Immunologic Memory , Lymphoid Tissue/immunology , T-Lymphocytes, Regulatory , Animals , Female , Mice, Inbred C57BL , Microbiota , Receptors, Lysosphingolipid/metabolism , Sphingosine-1-Phosphate Receptors , T-Lymphocytes, Regulatory/metabolism
10.
J Immunol ; 200(3): 1027-1038, 2018 02 01.
Article En | MEDLINE | ID: mdl-29288206

Emerging data highlight the crucial role of enzymes involved in amino acid metabolism in immune cell biology. IL-4-induced gene-1 (IL4I1), a secreted l-phenylalanine oxidase expressed by APCs, has been detected in B cells, yet its immunoregulatory role has only been explored on T cells. In this study, we show that IL4I1 regulates multiple steps in B cell physiology. Indeed, IL4I1 knockout mice exhibit an accelerated B cell egress from the bone marrow, resulting in the accumulation of peripheral follicular B cells. They also present a higher serum level of natural Igs and self-reactive Abs. We also demonstrate that IL4I1 produced by B cells themselves controls the germinal center reaction, plasma cell differentiation, and specific Ab production in response to T dependent Ags, SRBC, and NP-KLH. In vitro, IL4I1-deficient B cells proliferate more efficiently than their wild-type counterparts in response to BCR cross-linking. Moreover, the absence of IL4I1 increases activation of the Syk-Akt-S6kinase signaling pathway and calcium mobilization, and inhibits SHP-1 activity upon BCR engagement, thus supporting that IL4I1 negatively controls BCR-dependent activation. Overall, our study reveals a new perspective on IL4I1 as a key regulator of B cell biology.


Amino Acid Oxidoreductases/genetics , B-Lymphocytes/cytology , Flavoproteins/genetics , Lymphocyte Activation/immunology , Receptors, Antigen, B-Cell/immunology , Amino Acid Oxidoreductases/metabolism , Animals , B-Lymphocytes/immunology , Cell Differentiation/immunology , Flavoproteins/metabolism , Immunoglobulins/blood , L-Amino Acid Oxidase , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction/physiology , Syk Kinase/metabolism
11.
Elife ; 62017 12 14.
Article En | MEDLINE | ID: mdl-29239722

Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state.


Calcium/metabolism , Cell Differentiation , Phenotype , T-Lymphocytes, Regulatory/physiology , Animals , Calcineurin/metabolism , Cells, Cultured , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
12.
J Immunol ; 199(6): 1998-2007, 2017 09 15.
Article En | MEDLINE | ID: mdl-28779024

So far, peripheral T cells have mostly been described to circulate between blood, secondary lymphoid organs (SLOs), and lymph in the steady state. This nomadic existence would allow them to accomplish their surveying task for both foreign Ags and survival signals. Although it is now well established that γδ T cells can be rapidly recruited to inflammatory sites or in certain tumor microenvironments, the trafficking properties of peripheral γδ T cells have been poorly studied in the steady state. In the present study, we highlight the existence of resident γδ T cells in the SLOs of specific pathogen-free mice. Indeed, using several experimental approaches such as the injection of integrin-neutralizing Abs that inhibit the entry of circulating lymphocytes into lymph nodes and long-term parabiosis experiments, we have found that, contrary to Ly-6C-/+CD44lo and Ly-6C+CD44hi γδ T cells, a significant proportion of Ly-6C-CD44hi γδ T cells are trapped for long periods of time within lymph nodes and the spleen in the steady state. Specific in vivo cell depletion strategies have allowed us to demonstrate that macrophages are the main actors involved in this long-term retention of Ly-6C-CD44hi γδ T cells in SLOs.


Lymph Nodes/immunology , Macrophages/immunology , Spleen/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Animals , Antigens, Ly/metabolism , Cell Communication , Cell Movement , Cells, Cultured , Hyaluronan Receptors/metabolism , Immunity, Innate , Immunologic Surveillance , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell, gamma-delta/metabolism
13.
J Immunol ; 198(3): 1156-1163, 2017 02 01.
Article En | MEDLINE | ID: mdl-28003378

Failure of the immune system to eradicate viruses results in chronic viral infections, which are associated with increased susceptibility to secondary infections. Pathogenic HIV or lymphocytic choriomeningitis virus chronic infections display a persistent type I IFN signature. In chronic lymphocytic choriomeningitis virus infection, blockade of type I IFN signaling partially restores antiviral responses. In a mouse model, we tested whether chronic administration of type I IFN, at doses mimicking chronic viral infection, induced immunosuppression. Chronic exposure of mice to IFN-α alone was sufficient to strongly suppress specific CD8+ T cells responses to subsequent vaccinia virus infection. It resulted in the accumulation of Ly6Chi monocytes. These monocytes were similar, phenotypically and functionally, to the myeloid-derived suppressor cells found in cancer because they exerted a potent suppression on CD8+ T cell responses in vitro. They acted at least partly through the l-arginine pathway. In vivo, their elimination restored antiviral CD8+ T cell responses. Our work provides a specific mechanism accounting for the role of IFN-α in immunosuppression and predicts that type I IFN modulation will be pivotal to cure human chronic infections, cancer, or autoimmune diseases.


Immune Tolerance/drug effects , Interferon Type I/pharmacology , Myeloid-Derived Suppressor Cells/drug effects , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/physiology , Virus Diseases/immunology
14.
J Pathol ; 239(4): 473-83, 2016 08.
Article En | MEDLINE | ID: mdl-27178223

Severe sepsis remains a frequent and dreaded complication in cancer patients. Beyond the often fatal short-term outcome, the long-term sequelae of severe sepsis may also impact directly on the prognosis of the underlying malignancy in survivors. The immune system is involved in all stages of tumour development, in the detection of transforming and dying cells and in the prevention of tumour growth and dissemination. In fact, the profound and sustained immune defects induced by sepsis may constitute a privileged environment likely to favour tumour growth. We investigated the impact of sepsis on malignant tumour growth in a double-hit animal model of polymicrobial peritonitis, followed by subcutaneous inoculation of MCA205 fibrosarcoma cells. As compared to their sham-operated counterparts, post-septic mice exhibited accelerated tumour growth. This was associated with intratumoural accumulation of CD11b(+) Ly6G(high) polymorphonuclear cells (PMNs) that could be characterized as granulocytic myeloid-derived suppressor cells (G-MDSCs). Depletion of granulocytic cells in post-septic mice inhibited the sepsis-enhanced tumour growth. Toll-like receptor (TLR)-4 (Tlr4) and Myd88 deficiencies prevented sepsis-induced expansion of G-MDSCs and tumour growth. Our results demonstrate that the myelosuppressive environment induced by severe bacterial infections promotes malignant tumour growth, and highlight a critical role of CD11b(+) Ly6G(high) G-MDSCs under the control of TLR-dependent signalling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Fibrosarcoma/pathology , Granulocytes/pathology , Myeloid-Derived Suppressor Cells/pathology , Peritonitis/pathology , Toll-Like Receptor 4/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Fibrosarcoma/complications , Fibrosarcoma/metabolism , Granulocytes/metabolism , Mice , Mice, Knockout , Myeloid-Derived Suppressor Cells/metabolism , Peritonitis/complications , Peritonitis/metabolism
15.
J Immunol ; 195(4): 1449-58, 2015 Aug 15.
Article En | MEDLINE | ID: mdl-26123353

To better apprehend γ/δ T cell biological functions in the periphery, it appears crucial to identify markers highlighting the existence of distinct phenotypic and functional γ/δ T cell subsets. Interestingly, the expression of CD44 and Ly-6C subdivides murine peripheral γ/δ T cells into several subsets, with Ly-6C(-) CD44(hi) γ/δ T cells corresponding to the IL-17-producing CD27(-) γ/δ T cell subset exhibiting innate-like features. By comparing the other subsets to naive and memory CD8(+) α/ß T cells, in this study, we show that Ly-6C(- or +) CD44(lo) and Ly-6C(+)CD44(hi) γ/δ T cells greatly resemble, and behave like, their CD8(+) α/ß T cell counterparts. First, like memory CD8(+) α/ß T cells, Ly-6C(+)CD44(hi) γ/δ T cells are sparse in the thymus but largely increased in proportion in tissues. Second, similarly to naive CD8 α/ß T cells, CD44(lo) γ/δ T cells are poorly cycling in vivo in the steady state, and their proportion declines with age in secondary lymphoid organs. Third, CD44(lo) γ/δ T cells undergo spontaneous proliferation and convert to a memory-like Ly-6C(+)CD44(hi) phenotype in response to lymphopenia. Finally, CD44(lo) γ/δ T cells have an intrinsic high plasticity as, upon appropriate stimulation, they are capable of differentiating nonetheless into Th17-like and Th1-like cells but also into fully functional Foxp3(+) induced regulatory T cell-like γ/δ T cells. Thus, peripheral CD27(+) γ/δ T cells, commonly considered as a functionally related T cell compartment, actually share many common features with adaptive α/ß T cells, as both lineages include naive-like and memory-like lymphocytes with distinct phenotypic, functional, and homeostatic characteristics.


Adaptive Immunity , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Gene Expression , Homeostasis , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Immunophenotyping , Interleukin-17/biosynthesis , Lymphopenia/immunology , Lymphopenia/metabolism , Mice , Mice, Knockout , Phenotype , Signal Transduction , Tumor Necrosis Factor Receptor Superfamily, Member 7
16.
J Immunol ; 195(4): 1791-803, 2015 Aug 15.
Article En | MEDLINE | ID: mdl-26170390

An uncontrolled exaggerated Th17 response can drive the onset of autoimmune and inflammatory diseases. In this study, we show that, in T cells, Foxo1 is a negative regulator of the Th17 program. Using mixed bone marrow chimeras and Foxo1-deficient mice, we demonstrate that this control is effective in vivo, as well as in vitro during differentiation assays of naive T cells with specific inhibitor of Foxo1 or inhibitors of the PI3K/Akt pathway acting upstream of Foxo1. Consistently, expressing this transcription factor in T cells strongly decreases Th17 generation in vitro as well as transcription of both IL-17A and IL-23R RORγt-target genes. Finally, at the molecular level, we demonstrate that Foxo1 forms a complex with RORγt via its DNA binding domain to inhibit RORγt activity. We conclude that Foxo1 is a direct antagonist of the RORγt-Th17 program acting in a T cell-intrinsic manner.


Forkhead Transcription Factors/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocyte Subsets/metabolism , Th17 Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Forkhead Box Protein O1 , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Humans , Immunophenotyping , Interleukin-17/genetics , Interleukin-17/metabolism , Lymphocyte Count , Mice , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , Th17 Cells/cytology , Th17 Cells/immunology , Transcription, Genetic
17.
J Immunol ; 193(12): 5914-23, 2014 Dec 15.
Article En | MEDLINE | ID: mdl-25381435

CD4 regulatory T cells (Tregs) can be subdivided into two subsets according to Ly-6C expression in the periphery. Phenotypic analysis, imaging, and adoptive-transfer experiments of peripheral Ly-6C(-) and Ly-6C(+) Tregs reveal that the nonexpression of Ly-6C by ∼70% of peripheral Tregs depends on TCR signaling events. Interestingly, Ly-6C(-) Tregs express higher surface amounts of key immunosuppressive molecules than do Ly-6C(+) Tregs and produce constitutively anti-inflammatory cytokines. In line with their phenotype, Ly-6C(+) Tregs exhibit poor suppressive capacities in vitro and in vivo. Finally, although Ly-6C(-) Tregs maintain their numbers with age, Ly-6C(+) Tregs gradually disappear. Altogether, our data strongly suggest that both the survival and suppressive functions of peripheral CD4 Tregs rely on their ability to receive strong TCR signals.


Immunomodulation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Age Factors , Aging/immunology , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Antigens, Surface/genetics , Antigens, Surface/metabolism , Gene Expression , Immunophenotyping , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Transgenic , Phenotype
18.
Nat Commun ; 4: 2209, 2013.
Article En | MEDLINE | ID: mdl-23900386

Upon activation, naive CD4 T cells differentiate into a variety of T-helper-cell subsets characterized by different cytokine production and functions. Currently, lineage commitment is considered to depend mostly on the environmental context to which naive CD4 T cells are exposed. Here we challenge this model based on the supposed homogeneity of the naive CD4 T-cell compartment. We show that peripheral naive CD4 T cells can be subdivided into two subsets according to Ly-6C expression. Furthermore, the two newly defined subsets (Ly-6C(-) and Ly-6C(+) naive CD4 T cells) are not equal in their intrinsic ability to commit into the induced regulatory T-cell lineage. Finally, phenotypic analysis, imaging and adoptive transfer experiments reveal that Ly-6C expression is modulated by self-recognition, allowing the dichotomization of the naive CD4 T-cell compartment into two cell subsets with distinct self-reactivity. Altogether, our results show that naive CD4 T cells with the highest avidity for self are prone to differentiate into regulatory T cells.


Cell Differentiation/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Antigens, Ly/metabolism , Cell Polarity/immunology , Flow Cytometry , Fluorescence , Forkhead Transcription Factors/metabolism , Green Fluorescent Proteins/metabolism , Histocompatibility Antigens Class II/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Mice , Mice, Inbred C57BL , Th17 Cells/cytology , Th17 Cells/immunology
19.
Proc Natl Acad Sci U S A ; 110(32): 13085-90, 2013 Aug 06.
Article En | MEDLINE | ID: mdl-23878221

The present study evaluates the impact of immune cell populations on metastatic development in a model of spontaneous melanoma [mice expressing the human RET oncogene under the control of the metallothionein promoter (MT/ret mice)]. In this model, cancer cells disseminate early but remain dormant for several weeks. Then, MT/ret mice develop cutaneous metastases and, finally, distant metastases. A total of 35% of MT/ret mice develop a vitiligo, a skin depigmentation attributable to the lysis of normal melanocytes, associated with a delay in tumor progression. Here, we find that regulatory CD4(+) T cells accumulate in the skin, the spleen, and tumor-draining lymph nodes of MT/ret mice not developing vitiligo. Regulatory T-cell depletion and IL-10 neutralization led to increased occurrence of vitiligo that correlated with a decreased incidence of melanoma metastases. In contrast, inflammatory monocytes/dendritic cells accumulate in the skin of MT/ret mice with active vitiligo. Moreover, they inhibit tumor cell proliferation in vitro through a reactive oxygen species-dependent mechanism, and both their depletion and reactive oxygen species neutralization in vivo increased tumor cell dissemination. Altogether, our data suggest that regulatory CD4(+) T cells favor tumor progression, in part, by inhibiting recruitment and/or differentiation of inflammatory monocytes in the skin.


Inflammation/immunology , Melanoma/immunology , Monocytes/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Proliferation , Female , Flow Cytometry , Humans , Inflammation/genetics , Inflammation/pathology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Male , Melanoma/genetics , Melanoma/pathology , Metallothionein/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monocytes/metabolism , Neoplasm Metastasis , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Skin/immunology , Skin/metabolism , Skin/pathology , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Regulatory/metabolism , Time Factors , Vitiligo/genetics , Vitiligo/immunology
20.
Cell ; 153(2): 362-75, 2013 Apr 11.
Article En | MEDLINE | ID: mdl-23582326

The functions of Nr4a1-dependent Ly6C(low) monocytes remain enigmatic. We show that they are enriched within capillaries and scavenge microparticles from their lumenal side in a steady state. In the kidney cortex, perturbation of homeostasis by a TLR7-dependent nucleic acid "danger" signal, which may signify viral infection or local cell death, triggers Gαi-dependent intravascular retention of Ly6C(low) monocytes by the endothelium. Then, monocytes recruit neutrophils in a TLR7-dependent manner to mediate focal necrosis of endothelial cells, whereas the monocytes remove cellular debris. Prevention of Ly6C(low) monocyte development, crawling, or retention in Nr4a1(-/-), Itgal(-/-), and Tlr7(host-/-BM+/+) and Cx3cr1(-/-) mice, respectively, abolished neutrophil recruitment and endothelial killing. Prevention of neutrophil recruitment in Tlr7(host+/+BM-/-) mice or by neutrophil depletion also abolished endothelial cell necrosis. Therefore, Ly6C(low) monocytes are intravascular housekeepers that orchestrate the necrosis by neutrophils of endothelial cells that signal a local threat sensed via TLR7 followed by the in situ phagocytosis of cellular debris.


Endothelial Cells/metabolism , Monitoring, Immunologic , Monocytes/immunology , Animals , Cell Adhesion Molecules/metabolism , Cell-Derived Microparticles , Endothelium, Vascular/cytology , Endothelium, Vascular/immunology , Humans , Inflammation , Intercellular Adhesion Molecule-1/metabolism , Kidney/blood supply , Kidney/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Monocytes/metabolism , Neutrophils/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Chemokine/metabolism
...