Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Life Sci ; : 122750, 2024 May 25.
Article En | MEDLINE | ID: mdl-38801982

C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.

2.
Sci Signal ; 17(822): eabq1007, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38320000

Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCß pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.


Axons , Neurons , Animals , Mice , Axons/metabolism , Mammals/metabolism , Mitochondrial Proteins/metabolism , Neurons/metabolism
3.
Int J Mol Sci ; 24(18)2023 Sep 16.
Article En | MEDLINE | ID: mdl-37762479

Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.


Alzheimer Disease , Chalcones , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Alzheimer Disease/drug therapy , Acetylcholinesterase , Chalcones/pharmacology , Chalcones/therapeutic use
4.
Front Cell Neurosci ; 17: 1143319, 2023.
Article En | MEDLINE | ID: mdl-37153634

In addition to neuronal migration, brain development, and adult plasticity, the extracellular matrix protein Reelin has been extensively implicated in human psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. Moreover, heterozygous reeler mice exhibit features reminiscent of these disorders, while overexpression of Reelin protects against its manifestation. However, how Reelin influences the structure and circuits of the striatal complex, a key region for the above-mentioned disorders, is far from being understood, especially when altered Reelin expression levels are found at adult stages. In the present study, we took advantage of complementary conditional gain- and loss-of-function mouse models to investigate how Reelin levels may modify adult brain striatal structure and neuronal composition. Using immunohistochemical techniques, we determined that Reelin does not seem to influence the striatal patch and matrix organization (studied by µ-opioid receptor immunohistochemistry) nor the density of medium spiny neurons (MSNs, studied with DARPP-32). We show that overexpression of Reelin leads to increased numbers of striatal parvalbumin- and cholinergic-interneurons, and to a slight increase in tyrosine hydroxylase-positive projections. We conclude that increased Reelin levels might modulate the numbers of striatal interneurons and the density of the nigrostriatal dopaminergic projections, suggesting that these changes may be involved in the protection of Reelin against neuropsychiatric disorders.

5.
Cell Biosci ; 13(1): 52, 2023 Mar 09.
Article En | MEDLINE | ID: mdl-36895036

BACKGROUND: Alzheimer's disease (AD) is characterized by a polyetiological origin. Despite the global burden of AD and the advances made in AD drug research and development, the cure of the disease remains elusive, since any developed drug has demonstrated effectiveness to cure AD. Strikingly, an increasing number of studies indicate a linkage between AD and type 2 diabetes mellitus (T2DM), as both diseases share some common pathophysiological features. In fact, ß-secretase (BACE1) and acetylcholinesterase (AChE), two enzymes involved in both conditions, have been considered promising targets for both pathologies. In this regard, due to the multifactorial origin of these diseases, current research efforts are focusing on the development of multi-target drugs as a very promising option to derive effective treatments for both conditions. In the present study, we evaluated the effect of rhein-huprine hybrid (RHE-HUP), a synthesized BACE1 and AChE inhibitor, both considered key factors not only in AD but also in metabolic pathologies. Thus, the aim of this study is to evaluate the effects of this compound in APP/PS1 female mice, a well-established familial AD mouse model, challenged by high-fat diet (HFD) consumption to concomitantly simulate a T2DM-like condition. RESULTS: Intraperitoneal treatment with RHE-HUP in APP/PS1 mice for 4 weeks reduced the main hallmarks of AD, including Tau hyperphosphorylation, Aß42 peptide levels and plaque formation. Moreover, we found a decreased inflammatory response together with an increase in different synaptic proteins, such as drebrin 1 (DBN1) or synaptophysin, and in neurotrophic factors, especially in BDNF levels, correlated with a recovery in the number of dendritic spines, which resulted in memory improvement. Notably, the improvement observed in this model can be attributed directly to a protein regulation at central level, since no peripheral modification of those alterations induced by HFD consumption was observed. CONCLUSIONS: Our results suggest that RHE-HUP could be a new candidate for the treatment of AD, even for individuals with high risk due to peripheral metabolic disturbances, given its multi-target profile which allows for the improvement of some of the most important hallmarks of the disease.

6.
Biomed Pharmacother ; 155: 113709, 2022 Nov.
Article En | MEDLINE | ID: mdl-36126456

Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.


Diabetes Mellitus, Type 2 , Nervous System Diseases , Humans , Aged , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Leptin , Diabetes Mellitus, Type 2/drug therapy , Brain-Derived Neurotrophic Factor , Insulin/therapeutic use , Nervous System Diseases/drug therapy , Anti-Inflammatory Agents/therapeutic use , Tyrosine , Enzyme Inhibitors/pharmacology
7.
Front Pharmacol ; 13: 902047, 2022.
Article En | MEDLINE | ID: mdl-35899125

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ), the most PPAR abundant isotype in the central nervous system, is involved in microglial homeostasis and metabolism, whose disturbances have been demonstrated to play a key role in memory impairment. Although PPARß/δ function is well-established in metabolism, its contribution to neuronal and specifically memory process is underexplored. Therefore, the aim of the study is to determine the role of PPARß/δ in the neuropathological pathways involved in memory impairment and as to whether a risk factor implicated in memory loss such as obesity modulates neuropathological markers. To carry out this study, 6-month-old total knock-out for the Ppard gene male mice with C57BL/6X129/SV background (PPARß/δ-/-) and wild-type (WT) littermates with the same genetic background were used. Animals were fed, after the weaning (at 21 days old), and throughout their growth, either conventional chow (CT) or a palmitic acid-enriched diet (HFD). Thus, four groups were defined: WT CT, WT HFD, PPARß/δ-/- CT, and PPARß/δ-/- HFD. Before sacrifice, novel object recognition test (NORT) and glucose and insulin tolerance tests were performed. After that, animals were sacrificed by intracardiac perfusion or cervical dislocation. Different techniques, such as GolgiStain kit or immunofluorescence, were used to evaluate the role of PPARß/δ in memory dysfunction. Our results showed a decrease in dendritic spine density and synaptic markers in PPARß/δ-/- mice, which were corroborated in the NORT. Likewise, our study demonstrated that the lack of PPARß/δ receptor enhances gliosis in the hippocampus, contributing to astrocyte and microglial activation and to the increase in neuroinflammatory biomarkers. Additionally, alterations in the hippocampal insulin receptor pathway were found. Interestingly, while some of the disturbances caused by the lack of PPARß/δ were not affected by feeding the HFD, others were exacerbated or required the combination of both factors. Taken together, the loss of PPARß/δ-/- affects neuronal and synaptic structure, contributing to memory dysfunction, and they also present this receptor as a possible new target for the treatment of memory impairment.

8.
Front Biosci (Landmark Ed) ; 27(5): 146, 2022 05 06.
Article En | MEDLINE | ID: mdl-35638413

The increases in population ageing and growth are leading to a boosting in the number of people living with dementia, Alzheimer's disease (AD) being the most common cause. In spite of decades of intensive research, no cure for AD has been found yet. However, some treatments that may change disease progression and help control symptoms have been proposed. Beyond the classical hypotheses of AD etiopathogenesis, i.e., amyloid beta peptide (Aß) accumulation and tau hyperphosphorylation, a trend in attributing a key role to other molecular mechanisms is prompting the study of different therapeutic targets. Hence, drugs designed to modulate inflammation, insulin resistance, synapses, neurogenesis, cardiovascular factors and dysbiosis are shaping a new horizon in AD treatment. Within this frame, an increase in the number of candidate drugs for disease modification treatments is expected, as well as a focus on potential combinatory multidrug strategies.The present review summarizes the latest advances in drugs targeting Aß and tau as major contributors to AD pathophysiology. In addition, it introduces the most important drugs in clinical studies targeting alternative mechanisms thought to be involved in AD's neurodegenerative process.


Alzheimer Disease , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Disease Progression , Humans
9.
Mol Med ; 28(1): 48, 2022 05 04.
Article En | MEDLINE | ID: mdl-35508978

BACKGROUND AND AIM: The appearance of alterations in normal metabolic activity has been increasingly considered a risk factor for the development of sporadic and late-onset neurodegenerative diseases. In this report, we induced chronic metabolic stress by feeding of a high-fat diet (HFD) in order to study its consequences in cognition. We also studied the effects of a loss of function of isoforms 1 and 3 of the c-Jun N-terminal Kinases (JNK), stress and cell death response elements. METHODS: Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice at 9 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-GTT and IP­ITT) were performed to evaluate peripheral biometrics. Additionally, cognitive behavioral tests and analysis of spine density were performed to assess cognitive function. Molecular studies were carried out to confirm the effects of metabolic stressors in the hippocampus relative to cognitive loss. RESULTS: Our studies demonstrated that HFD in Jnk3-/- lead to synergetic responses. Loss of function of JNK3 led to increased body weight, especially when exposed to an HFD and they had significantly decreased response to insulin. These mice also showed increased stress in the endoplasmic reticulum and diminished cognitive capacity. However, loss of function of JNK1 promoted normal or heightened energetic metabolism and preserved cognitive function even when chronically metabolically stressed. CONCLUSIONS: Downregulation of JNK3 does not seem to be a suitable target for the modulation of energetic-cognitive dysregulations while loss of function of JNK1 seems to promote a good metabolic-cognitive profile, just like resistance to the negative effects of chronic feeding with HFD.


Hippocampus , Mitogen-Activated Protein Kinase 8 , Animals , Body Weight , Cognition , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism
10.
Nutr Neurosci ; 25(12): 2627-2637, 2022 Dec.
Article En | MEDLINE | ID: mdl-34789070

Deregulations like the loss of sensitivity to insulin (insulin resistance) and chronic inflammation are alterations very commonly found in sporadic forms of neurodegenerative pathologies. Thus, finding strategies to protect against them, may lead to a reduction in the incidence and/or affectation of these pathologies. The grape seed-derived proanthocyanidins extract (GSPE) is a mixture of compounds highly enriched in polyphenols and flavonoids that have shown to have a wide range of therapeutic benefits due to their antioxidant and anti-inflammatory properties. OBJECTIVES: This study aimed to assess the protective effects of a short pre-treatment of GSPE in the hippocampus against a prolonged feeding with cafeteria diet. METHODS: GSPE was administered for 10 days followed by 12 weeks of cafeteria diet. We analyzed transcriptional activity of genes and protein expression of key mediators of neurodegeneration in brain samples. RESULTS: Results indicated that GSPE was able to protect against cellular damage through the activation of AKT, as well as promote the maintenance of mitochondrial function by conserving the OXPHOS complexes and upregulating the antioxidant SOD. DISCUSSION: We observed that GSPE decreased inflammatory activation as observed through the downregulation of JNK, IL6 and TNFα, just like the reduction in reactive profile of astrocytes. Overall, the data presented here offers an interesting and hopeful initial step for future long-term studies on the beneficial effects of a supplementation of common diets with polyphenol and flavonoid substances for the amelioration of typical early hallmarks of neurodegeneration.


Proanthocyanidins , Rats , Animals , Proanthocyanidins/pharmacology , Antioxidants/pharmacology , Rats, Wistar , Diet , Polyphenols/pharmacology , Hippocampus , Mitochondria
11.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 11.
Article En | MEDLINE | ID: mdl-34681255

Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.

12.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article En | MEDLINE | ID: mdl-34502457

(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/-), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/-), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7-JNK pathway has a role in adult neurogenic activity.


Hippocampus/physiology , MAP Kinase Kinase 4/physiology , MAP Kinase Kinase 7/physiology , MAP Kinase Signaling System , Neurogenesis , Animals , Doublecortin Protein , Gene Deletion , Mice, Transgenic
13.
Neurodegener Dis Manag ; 11(4): 263-276, 2021 08.
Article En | MEDLINE | ID: mdl-34412534

The actual standard treatment for mild-to-moderately severe Alzheimer's disease only attacks its symptoms. Masitinib is a potent and selective phenylaminothiazole-type tyrosine kinase inhibitor which is currently in Phase III studies for the treatment of Alzheimer's disease (AD) with the aim of modifying its evolution and with multiple pharmacological targets such as inhibition of mast cells activity, inhibition of microglia activation, modulation of Aß and Tau protein signaling pathway and prevention of synaptic damage. Here, we review the preclinical and clinical studies that investigated the administration of masitinib treatment in monotherapy in AD. All research studies revealed positive effects concerning the cognitive functions in AD and generally with good safety and tolerability.


Lay abstract In the 21st century, life expectancy has increased a lot in developed countries but so has the number of people who are diagnosed with Alzheimer's disease (AD). AD causes a decline in brain function over time and is the main cause of death and disability in elderly people. Current treatments only improve the symptoms of the disease but do not cure or stop the disease getting worse. For this reason, new treatments are being developed including the drug masitinib which is in Phase III in clinical trials. Masitinib protects specific brain and nervous system cells from being damaged by the disease. Results from current research into masitinib suggest that it can improve cognitive processes in AD patients. This article summarizes results from masitinib clinical and preclinical studies.


Alzheimer Disease/drug therapy , Benzamides/therapeutic use , Piperidines/therapeutic use , Pyridines/therapeutic use , Thiazoles/therapeutic use , Cognition/drug effects , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
14.
Cell Biosci ; 11(1): 141, 2021 Jul 22.
Article En | MEDLINE | ID: mdl-34294142

BACKGROUND: Several studies stablished a relationship between metabolic disturbances and Alzheimer´s disease (AD) where inflammation plays a pivotal role. However, mechanisms involved still remain unclear. In the present study, we aimed to evaluate central and peripheral effects of dexibuprofen (DXI) in the progression of AD in APPswe/PS1dE9 (APP/PS1) female mice, a familial AD model, fed with high fat diet (HFD). Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice, at 6 months. Moreover, mice were divided into subgroups to which were administered drinking water or water supplemented with DXI (20 mg kg-1 d-1) for 3 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-ITT) were performed to evaluate peripheral parameters and also behavioral tests to determine cognitive decline. Moreover, molecular studies such as Western blot and RT-PCR were carried out in liver to confirm metabolic effects and in hippocampus to analyze several pathways considered hallmarks in AD. RESULTS: Our studies demonstrate that DXI improved metabolic alterations observed in transgenic animals fed with HFD in vivo, data in accordance with those obtained at molecular level. Moreover, an improvement of cognitive decline and neuroinflammation among other alterations associated with AD were observed such as beta-amyloid plaque accumulation and unfolded protein response. CONCLUSIONS: Collectively, evidence suggest that chronic administration of DXI prevents the progression of AD through the regulation of inflammation which contribute to improve hallmarks of this pathology. Thus, this compound could constitute a novel therapeutic approach in the treatment of AD in a combined therapy.

15.
J Alzheimers Dis ; 82(s1): S91-S107, 2021.
Article En | MEDLINE | ID: mdl-33325386

To deeply understand late onset Alzheimer's disease (LOAD), it may be necessary to change the concept that it is a disease exclusively driven by aging processes. The onset of LOAD could be associated with a previous peripheral stress at the level of the gut (changes in the gut microbiota), obesity (metabolic stress), and infections, among other systemic/environmental stressors. The onset of LOAD, then, may result from the generation of mild peripheral inflammatory processes involving cytokine production associated with peripheral stressors that in a second step enter the brain and spread out the process causing a neuroinflammatory brain disease. This hypothesis could explain the potential efficacy of Sodium Oligomannate (GV-971), a mixture of acidic linear oligosaccharides that have shown to remodel gut microbiota and slowdown LOAD. However, regardless of the origin of the disease, the end goal of LOAD-related preventative or disease modifying therapies is to preserve dendritic spines and synaptic plasticity that underlay and support healthy cognition. Here we discuss how systemic/environmental stressors impact pathways associated with the regulation of spine morphogenesis and synaptic maintenance, including insulin receptor and the brain derived neurotrophic factor signaling. Spine structure remodeling is a plausible mechanism to maintain synapses and provide cognitive resilience in LOAD patients. Importantly, we also propose a combination of drugs targeting such stressors that may be able to modify the course of LOAD by acting on preventing dendritic spines and synapsis loss.


Alzheimer Disease/therapy , Dendritic Spines/physiology , Gastrointestinal Microbiome/drug effects , Mannose/analogs & derivatives , Oligosaccharides/administration & dosage , Synapses/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Dendritic Spines/drug effects , Dendritic Spines/pathology , Diet, Healthy/methods , Diet, Healthy/psychology , Exercise/physiology , Exercise/psychology , Gastrointestinal Microbiome/physiology , Humans , Mannose/administration & dosage , Synapses/drug effects , Synapses/pathology
16.
J Alzheimers Dis ; 82(s1): S127-S139, 2021.
Article En | MEDLINE | ID: mdl-33216036

Given the highly multifactorial origin of Alzheimer's disease (AD) neuropathology, disentangling and orderly knowing mechanisms involved in sporadic onset are arduous. Nevertheless, when the elements involved are dissected into smaller pieces, the task becomes more accessible. This review aimed to describe the link between c-Jun N-terminal Kinases (JNKs), master regulators of many cellular functions, and the early alterations of AD: synaptic loss and dysregulation of neuronal transport. Both processes have a role in the posterior cognitive decline observed in AD. The manuscript focuses on the molecular mechanisms of glutamatergic, GABA, and cholinergic synapses altered by the presence of amyloid-ß aggregates and hyperphosphorylated tau, as well as on several consequences of the disruption of cellular processes linked to neuronal transport that is controlled by the JNK-JIP (c-jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) complex, including the transport of AßPP or autophagosomes.


Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Neurons/metabolism , Synapses/metabolism , Alzheimer Disease/pathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Drug Delivery Systems/methods , Glutamic Acid/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Nerve Growth Factor/metabolism , Neurons/drug effects , Neurons/pathology , Protein Kinase Inhibitors/administration & dosage , Synapses/drug effects , Synapses/pathology , gamma-Aminobutyric Acid/metabolism
17.
Cells ; 9(8)2020 08 13.
Article En | MEDLINE | ID: mdl-32823764

The c-Jun N-terminal Kinases (JNKs) are a group of regulatory elements responsible for the control of a wide array of functions within the cell. In the central nervous system (CNS), JNKs are involved in neuronal polarization, starting from the cell division of neural stem cells and ending with their final positioning when migrating and maturing. This review will focus mostly on isoform JNK1, the foremost contributor of total JNK activity in the CNS. Throughout the text, research from multiple groups will be summarized and discussed in order to describe the involvement of the JNKs in the different steps of neuronal polarization. The data presented support the idea that isoform JNK1 is highly relevant to the regulation of many of the processes that occur in neuronal development in the CNS.


Brain/cytology , Brain/growth & development , Cell Polarity/physiology , Mitogen-Activated Protein Kinase 8/metabolism , Neurons/metabolism , Animals , Doublecortin Protein , Humans , Isoenzymes , Mice , Phosphorylation/physiology , Signal Transduction/physiology
18.
Expert Opin Drug Discov ; 15(9): 993-1004, 2020 09.
Article En | MEDLINE | ID: mdl-32450711

INTRODUCTION: Opicapone (OPC) is a well-established catechol-O-methyltransferase (COMT) inhibitor that is approved for the treatment of Parkinson's disease (PD) associated with L-DOPA/L-amino acid decarboxylase inhibitor (DDI) therapy allowing for prolonged activity due to a more continuous supply of L-DOPA in the brain. Thus, OPC decreases fluctuation in L-DOPA plasma levels and favors more constant central dopaminergic receptor stimulation, thus improving PD symptomatology. AREAS COVERED: This review evaluates the preclinical development, pharmacology, pharmacokinetics and safety profile of OPC. Data was extracted from published preclinical and clinical studies published on PUBMED and SCOPUS (Search period: 2000-2019). Clinical and post-marketing data are also evaluated. EXPERT OPINION: OPC is a third generation COMT inhibitor with a novel structure. It has an efficacy and tolerability superior to its predecessors, tolcapone (TOL) and entacapone (ENT). It also provides a safe and simplified drug regimen that allows neurologists to individually adjust the existing daily administration of L-DOPA. OPC is indicated as an adjunctive therapy to L-DOPA/DDI in patients with PD and end-of-dose motor fluctuations who cannot be stabilized on those combinations.


Catechol O-Methyltransferase Inhibitors/administration & dosage , Oxadiazoles/administration & dosage , Parkinson Disease/drug therapy , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects , Antiparkinson Agents/pharmacology , Catechol O-Methyltransferase Inhibitors/adverse effects , Catechol O-Methyltransferase Inhibitors/pharmacology , Drug Development , Drug Evaluation, Preclinical , Humans , Levodopa/metabolism , Oxadiazoles/adverse effects , Oxadiazoles/pharmacology , Parkinson Disease/physiopathology
19.
Mol Neurobiol ; 57(6): 2887-2888, 2020 Jun.
Article En | MEDLINE | ID: mdl-32367492

The original version of this article unfortunately contained mistake. The authors found that Fig. 4.B mistakenly displays an incorrect GAPDH image. The authors are truly regretful and apologize for the mistake.

20.
Curr Pharm Des ; 26(12): 1286-1299, 2020.
Article En | MEDLINE | ID: mdl-32066356

Late-onset Alzheimer's disease (LOAD) is a neurodegenerative disorder that has become a worldwide health problem. This pathology has been classically characterized for its affectation on cognitive function and the presence of depositions of extracellular amyloid ß-protein (Aß) and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein. To this day, no effective treatment has been developed. Multiple strategies have been proposed over the years with the aim of finding new therapeutic approaches, such as the sequestration of Aß in plasma or the administration of anti-inflammatory drugs. Also, given the significant role of the insulin receptor in the brain in the proper maintenance of cognitive function, drugs focused on the amelioration of insulin resistance have been proposed as potentially useful and effective in the treatment of AD. In the present review, taking into account the molecular complexity of the disease, it has been proposed that the most appropriate therapeutic strategy is a combinatory treatment of several drugs that will regulate a wide spectrum of the described altered pathological pathways.


Alzheimer Disease , Insulin Resistance , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Humans , tau Proteins/metabolism
...