Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ACS Omega ; 4(14): 16226-16232, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31592163

Trichomoniasis is caused by the parasitic protozoan Trichomonas vaginalis. The increasing prevalence of strains resistant to the current 5-nitroimidazole treatments creates the need for novel therapies. T. vaginalis cannot synthesize purine and pyrimidine rings and requires salvage pathway enzymes to obtain them from host nucleosides. The uridine nucleoside ribohydrolase was screened using an 19F NMR-based activity assay against a 2000-compound fragment diversity library. Several series of inhibitors were identified including scaffolds based on acetamides, cyclic ureas or ureas, pyridines, and pyrrolidines. A number of potent singleton compounds were identified, as well. Eighteen compounds with IC50 values of 20 µM or lower were identified, including some with ligand efficiency values of 0.5 or greater. Detergent and jump-dilution counter screens validated all scaffold classes as target-specific, reversible inhibitors. Identified scaffolds differ substantially from 5-nitroimidazoles. Medicinal chemistry using the structure-activity relationship emerging from the fragment hits is being pursued to discover nanomolar inhibitors.

2.
J Vis Exp ; (148)2019 06 30.
Article En | MEDLINE | ID: mdl-31305530

NMR spectroscopy is often used for the identification and characterization of enzyme inhibitors in drug discovery, particularly in the context of fragment screening. NMR-based activity assays are ideally suited to work at the higher concentrations of test compounds required to detect these weaker inhibitors. The dynamic range and chemical shift dispersion in an NMR experiment can easily resolve resonances from substrate, product, and test compounds. This contrasts with spectrophotometric assays, in which read-out interference problems often arise from compounds with overlapping UV-vis absorption profiles. In addition, since they lack reporter enzymes, the single-enzyme NMR assays are not prone to coupled-assay false positives. This attribute makes them useful as orthogonal assays, complementing traditional high throughput screening assays and benchtop triage assays. Detailed protocols are provided for initial compound assays at 500 µM and 250 µM, dose-response assays for determining IC50 values, detergent counter screen assays, jump-dilution counter screen assays, and assays in E. coli whole cells. The methods are demonstrated using two nucleoside ribohydrolase enzymes. The use of 1H NMR is shown for the purine-specific enzyme, while 19F NMR is shown for the pyrimidine-specific enzyme. The protocols are generally applicable to any enzyme where substrate and product resonances can be observed and distinguished by NMR spectroscopy. To be the most useful in the context of drug discovery, the final concentration of substrate should be no more than 2-3x its Km value. The choice of NMR experiment depends on the enzyme reaction and substrates available as well as available NMR instrumentation.


Escherichia coli/enzymology , Magnetic Resonance Spectroscopy , N-Glycosyl Hydrolases/antagonists & inhibitors , Biological Assay , Drug Discovery , Enzyme Inhibitors , Escherichia coli/metabolism , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , N-Glycosyl Hydrolases/metabolism
...