Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1420331, 2024.
Article in English | MEDLINE | ID: mdl-38798701

ABSTRACT

Suppressor transfer RNAs (sup-tRNAs) are receiving renewed attention for their promising therapeutic properties in treating genetic diseases caused by nonsense mutations. Traditionally, sup-tRNAs have been created by replacing the anticodon sequence of native tRNAs with a suppressor sequence. However, due to their complex interactome, considering other structural and functional tRNA features for design and engineering can yield more effective sup-tRNA therapies. For over 2 decades, the field of genetic code expansion (GCE) has created a wealth of knowledge, resources, and tools to engineer sup-tRNAs. In this Mini Review, we aim to shed light on how existing knowledge and strategies to develop sup-tRNAs for GCE can be adopted to accelerate the discovery of efficient and specific sup-tRNAs for medical treatment options. We highlight methods and milestones and discuss how these approaches may enlighten the research and development of tRNA medicines.

2.
J Biol Chem ; 299(7): 104852, 2023 07.
Article in English | MEDLINE | ID: mdl-37224963

ABSTRACT

The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.


Subject(s)
Genetic Code , Protein Biosynthesis , RNA, Transfer , Humans , Amino Acids/metabolism , Codon/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Proline/metabolism , Protein Biosynthesis/genetics , Proteins/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Threonine/metabolism , Streptomyces/genetics , Mutation , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL
...