Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1007070, 2022.
Article in English | MEDLINE | ID: mdl-36405710

ABSTRACT

Leishmania parasites harbor a unique network of circular DNA known as kinetoplast DNA (kDNA). The role of kDNA in leishmania infections is poorly understood. Herein, we show that kDNA delivery to the cytosol of Leishmania major infected THP-1 macrophages provoked increased parasite loads when compared to untreated cells, hinting at the involvement of cytosolic DNA sensors in facilitating parasite evasion from the immune system. Parasite proliferation was significantly hindered in cGAS- STING- and TBK-1 knockout THP-1 macrophages when compared to wild type cells. Nanostring nCounter gene expression analysis on L. major infected wild type versus knockout cells revealed that some of the most upregulated genes including, Granulysin (GNLY), Chitotriosidase-1 (CHIT1), Sialomucin core protein 24 (CD164), SLAM Family Member 7 (SLAMF7), insulin-like growth factor receptor 2 (IGF2R) and apolipoprotein E (APOE) were identical in infected cGAS and TBK1 knockout cells, implying their involvement in parasite control. Amlexanox treatment (a TBK1 inhibitor) of L. major infected wild type cells inhibited both the percentage and the parasite load of infected THP-1 cells and delayed footpad swelling in parasite infected mice. Collectively, these results suggest that leishmania parasites might hijack the cGAS-STING-TBK1 signaling pathway to their own advantage and the TBK1 inhibitor amlexanox could be of interest as a candidate drug in treatment of cutaneous leishmaniasis.


Subject(s)
Leishmania , Parasites , Mice , Animals , DNA, Kinetoplast , Leishmania/metabolism , Parasites/metabolism , Parasitemia , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction , Macrophages/metabolism , DNA/metabolism , Chromogranin A , Protein Serine-Threonine Kinases/genetics
2.
Sci Rep ; 12(1): 15139, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071119

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and resistant to both conventional and targeted chemotherapy. Recently, nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the incidence and mortality of different types of cancers. Here, we investigated the cellular bioactivities of a series of triazolothiadiazine derivatives on HCC, which have been previously reported as potent analgesic/anti-inflammatory compounds. From the initially tested 32 triazolothiadiazine NSAID derivatives, 3 compounds were selected based on their IC50 values for further molecular assays on 9 different HCC cell lines. 7b, which was the most potent compound, induced G2/M phase cell cycle arrest and apoptosis in HCC cells. Cell death was due to oxidative stress-induced JNK protein activation, which involved the dynamic involvement of ASK1, MKK7, and c-Jun proteins. Moreover, 7b treated nude mice had a significantly decreased tumor volume and prolonged disease-free survival. 7b also inhibited the migration of HCC cells and enrichment of liver cancer stem cells (LCSCs) alone or in combination with sorafenib. With its ability to act on proliferation, stemness and the migration of HCC cells, 7b can be considered for the therapeutics of HCC, which has an increased incidence rate of ~ 3% annually.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , MAP Kinase Signaling System , Mice , Mice, Nude , Oxidative Stress
3.
Allergy ; 77(1): 258-270, 2022 01.
Article in English | MEDLINE | ID: mdl-34519053

ABSTRACT

BACKGROUND: Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the four structural proteins of SARS-CoV-2. METHODS: VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography, and characterized by tunable-resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals demonstrated the immune potency of the formulated VLP vaccine. RESULTS: Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN-adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1-biased T-cell responses, reduced virus load, and prevented lung pathology upon live virus challenge in vaccinated animals. CONCLUSION: These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect animals from developing COVID-19 infection following vaccination.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , HEK293 Cells , Humans , SARS-CoV-2
4.
J Immunol ; 205(10): 2707-2718, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33028617

ABSTRACT

Immunomodulatory commensal bacteria modify host immunity through delivery of regulatory microbial-derived products to host cells. Extracellular membrane vesicles (MVs) secreted from symbiont commensals represent one such transport mechanism. How MVs exert their anti-inflammatory effects or whether their tolerance-inducing potential can be used for therapeutic purposes remains poorly defined. In this study, we show that MVs isolated from the human lactic acid commensal bacteria Pediococcus pentosaceus suppressed Ag-specific humoral and cellular responses. MV treatment of bone marrow-derived macrophages and bone marrow progenitors promoted M2-like macrophage polarization and myeloid-derived suppressor cell differentiation, respectively, most likely in a TLR2-dependent manner. Consistent with their immunomodulatory activity, MV-differentiated cells upregulated expression of IL-10, arginase-1, and PD-L1 and suppressed the proliferation of activated T cells. MVs' anti-inflammatory effects were further tested in acute inflammation models in mice. In carbon tetrachloride-induced fibrosis and zymosan-induced peritonitis models, MVs ameliorated inflammation. In the dextran sodium sulfate-induced acute colitis model, systemic treatment with MVs prevented colon shortening and loss of crypt architecture. In an excisional wound healing model, i.p. MV administration accelerated wound closure through recruitment of PD-L1-expressing myeloid cells to the wound site. Collectively, these results indicate that P. pentosaceus-derived MVs hold promise as therapeutic agents in management/treatment of inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Biological Products/pharmacology , Cell-Derived Microparticles/immunology , Gastrointestinal Microbiome/immunology , Macrophages/drug effects , Myeloid-Derived Suppressor Cells/drug effects , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , Biological Products/isolation & purification , Biological Products/therapeutic use , Cell Membrane/immunology , Disease Models, Animal , Female , Humans , Inflammation/drug therapy , Inflammation/immunology , Ligilactobacillus salivarius/cytology , Ligilactobacillus salivarius/immunology , Macrophage Activation/drug effects , Macrophages/immunology , Mice , Myeloid-Derived Suppressor Cells/immunology , Ovalbumin/administration & dosage , Ovalbumin/immunology , Pediococcus pentosaceus/cytology , Pediococcus pentosaceus/immunology , T-Lymphocytes, Regulatory/immunology
5.
Nat Commun ; 11(1): 2416, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415208

ABSTRACT

Chemoresistance is a major obstacle in triple negative breast cancer (TNBC), the most aggressive breast cancer subtype. Here we identify hypoxia-induced ECM re-modeler, lysyl oxidase (LOX) as a key inducer of chemoresistance by developing chemoresistant TNBC tumors in vivo and characterizing their transcriptomes by RNA-sequencing. Inhibiting LOX reduces collagen cross-linking and fibronectin assembly, increases drug penetration, and downregulates ITGA5/FN1 expression, resulting in inhibition of FAK/Src signaling, induction of apoptosis and re-sensitization to chemotherapy. Similarly, inhibiting FAK/Src results in chemosensitization. These effects are observed in 3D-cultured cell lines, tumor organoids, chemoresistant xenografts, syngeneic tumors and PDX models. Re-expressing the hypoxia-repressed miR-142-3p, which targets HIF1A, LOX and ITGA5, causes further suppression of the HIF-1α/LOX/ITGA5/FN1 axis. Notably, higher LOX, ITGA5, or FN1, or lower miR-142-3p levels are associated with shorter survival in chemotherapy-treated TNBC patients. These results provide strong pre-clinical rationale for developing and testing LOX inhibitors to overcome chemoresistance in TNBC patients.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology , Animals , Apoptosis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Collagen/chemistry , Down-Regulation , Extracellular Matrix/metabolism , Female , Fibronectins/metabolism , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Hypoxia , Integrins/metabolism , Mice , Mice, Nude , MicroRNAs/metabolism , Neoplasm Transplantation , RNA-Seq , Signal Transduction
6.
Int Immunol ; 32(1): 39-48, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31633763

ABSTRACT

Immune-mediated inflammation must be down-regulated to facilitate tissue remodeling during homeostatic restoration of an inflammatory response. Uncontrolled or over-exuberant immune activation can cause autoimmune diseases, as well as tissue destruction. A151, the archetypal example of a chemically synthesized suppressive oligodeoxynucleotide (ODN) based on repetitive telomere-derived TTAGGG sequences, was shown to successfully down-regulate a variety of immune responses. However, the degree, duration and breadth of A151-induced transcriptome alterations remain elusive. Here, we performed a comprehensive microarray analysis in combination with Ingenuity Pathway Analysis (IPA) using murine splenocytes to investigate the underlying mechanism of A151-dependent immune suppression. Our results revealed that A151 significantly down-regulates critical mammalian target of rapamycin (mTOR) activators (Pi3kcd, Pdpk1 and Rheb), elements downstream of mTOR signaling (Rps6ka1, Myc, Stat3 and Slc2a1), an important component of the mTORC2 protein complex (Rictor) and Mtor itself. The effects of A151 on mTOR signaling were dose- and time-dependent. Moreover, flow cytometry and immunoblotting analyses demonstrated that A151 is able to reverse mTOR phosphorylation comparably to the well-known mTOR inhibitor rapamycin. Furthermore, Seahorse metabolic assays showed an A151 ODN-induced decrease in both oxygen consumption and glycolysis implying that a metabolically inert state in macrophages could be triggered by A151 treatment. Overall, our findings suggested novel insights into the mechanism by which the immune system is metabolically modulated by A151 ODN.


Subject(s)
Immunosuppressive Agents/pharmacology , Oligodeoxyribonucleotides/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Amino Acid Motifs/drug effects , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Oligodeoxyribonucleotides/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL