Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurosci ; 43(7): 1074-1088, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36796842

ABSTRACT

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.


Subject(s)
Neurosciences , Biophysics
2.
Cogn Affect Behav Neurosci ; 22(5): 952-968, 2022 10.
Article in English | MEDLINE | ID: mdl-35332510

ABSTRACT

The anterior cingulate cortex (ACC) has been implicated in a number of functions, including performance monitoring and decision-making involving effort. The prediction of responses and outcomes (PRO) model has provided a unified account of much human and monkey ACC data involving anatomy, neurophysiology, EEG, fMRI, and behavior. We explored the computational nature of ACC with the PRO model, extending it to account specifically for both human and macaque monkey decision-making under risk, including both behavioral and neural data. We show that the PRO model can account for a number of additional effects related to outcome prediction, decision-making under risk, gambling behavior. In particular, we show that the ACC represents the variance of uncertain outcomes, suggesting a link between ACC function and mean-variance theories of decision making. The PRO model provides a unified account of a large set of data regarding the ACC.


Subject(s)
Gambling , Gyrus Cinguli , Decision Making/physiology , Gambling/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/physiology
3.
Behav Neurosci ; 134(4): 296-308, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32658523

ABSTRACT

Evaluation often involves integrating multiple determinants of value, such as the different possible outcomes in risky choice. A brain region can be placed either before or after a presumed evaluation stage by measuring how responses of its neurons depend on multiple determinants of value. A brain region could also, in principle, show partial integration, which would indicate that it occupies a middle position between (preevaluative) nonintegration and (postevaluative) full integration. Existing mathematical techniques cannot distinguish full from partial integration and therefore risk misidentifying regional function. Here we use a new Bayesian regression-based approach to analyze responses of neurons in dorsal anterior cingulate cortex (dACC) to risky offers. We find that dACC neurons only partially integrate across outcome dimensions, indicating that dACC cannot be assigned to either a pre- or postevaluative position. Neurons in dACC also show putative signatures of value comparison, thereby demonstrating that comparison does not require complete evaluation before proceeding. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Choice Behavior/physiology , Gyrus Cinguli/physiology , Animals , Bayes Theorem , Behavior, Animal/physiology , Gambling/physiopathology , Macaca mulatta , Magnetic Resonance Imaging/methods , Male , Neurons/physiology
4.
Anim Cogn ; 21(5): 671-684, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29971595

ABSTRACT

Previous studies have shown that the pupils dilate more in anticipation of larger rewards. This finding raises the possibility of a more general association between reward amount and pupil size. We tested this idea by characterizing macaque pupil responses to offered rewards during evaluation and comparison in a binary choice task. To control attention, we made use of a design in which offers occurred in sequence. By looking at pupil responses after choice but before reward, we confirmed the previously observed positive association between pupil size and anticipated reward values. Surprisingly, however, we find that pupil size is negatively correlated with the value of offered gambles before choice, during both evaluation and comparison stages of the task. These results demonstrate a functional distinction between offered and anticipated rewards and present evidence against a narrow version of the simulation hypothesis; the idea that we represent offers by reactivating states associated with anticipating them. They also suggest that pupil size is correlated with relative, not absolute, values of offers, suggestive of an accept-reject model of comparison.


Subject(s)
Attention , Macaca , Pupil , Reward , Animals , Male , Pupil/physiology
5.
J Neurosci ; 38(18): 4383-4398, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29626169

ABSTRACT

Monkeys and other animals appear to share with humans two risk attitudes predicted by prospect theory: an inverse-S-shaped probability-weighting (PW) function and a steeper utility curve for losses than for gains. These findings suggest that such preferences are stable traits with common neural substrates. We hypothesized instead that animals tailor their preferences to subtle changes in task contexts, making risk attitudes flexible. Previous studies used a limited number of outcomes, trial types, and contexts. To gain a broader perspective, we examined two large datasets of male macaques' risky choices: one from a task with real (juice) gains and another from a token task with gains and losses. In contrast to previous findings, monkeys were risk seeking for both gains and losses (i.e., lacked a reflection effect) and showed steeper gain than loss curves (loss seeking). Utility curves for gains were substantially different in the two tasks. Monkeys showed nearly linear PWs in one task and S-shaped ones in the other; neither task produced a consistent inverse-S-shaped curve. To account for these observations, we developed and tested various computational models of the processes involved in the construction of reward value. We found that adaptive differential weighting of prospective gamble outcomes could partially account for the observed differences in the utility functions across the two experiments and thus provide a plausible mechanism underlying flexible risk attitudes. Together, our results support the idea that risky choices are constructed flexibly at the time of elicitation and place important constraints on neural models of economic choice.SIGNIFICANCE STATEMENT We respond in reliable ways to risk, but are our risk preferences stable traits or ephemeral states? Using various computational models, we examined two large datasets of macaque risky choices in two different tasks. We observed several deviations from "classic" risk preferences seen in humans and monkeys: no reflection effect, loss seeking as opposed to loss aversion, and linear and S-shaped, as opposed to inverse-S-shaped, probability distortion. These results challenge the idea that our risk attitudes are evolved traits shared with the last common ancestor of macaques and humans, suggesting instead that behavioral flexibility is the hallmark of risky choice in primates. We show how this flexibility can emerge partly as a result of interactions between attentional and reward systems.


Subject(s)
Attitude , Risk-Taking , Algorithms , Animals , Computer Simulation , Decision Making , Female , Gambling/psychology , Macaca mulatta , Male , Reward
6.
Decision (Wash D C ) ; 5(2): 129-142, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29682592

ABSTRACT

Complex natural systems from brains to bee swarms have evolved to make adaptive multifactorial decisions. Recent theoretical and empirical work suggests that many evolved systems may take advantage of common motifs across multiple domains. We are particularly interested in value sensitivity (i.e., sensitivity to the magnitude or intensity of the stimuli or reward under consideration) as a mechanism to resolve deadlocks adaptively. This mechanism favours long-term reward maximization over accuracy in a simple manner, because it avoids costly delays associated with ambivalence between similar options; speed-value trade-offs have been proposed to be evolutionarily advantageous for many kinds of decision. A key prediction of the value-sensitivity hypothesis is that choices between equally-valued options will proceed faster when the options have a high value than when they have a low value. However, value-sensitivity is not part of idealised choice models such as diffusion to bound. Here we examine two different choice behaviours in two different species, perceptual decisions in humans and economic choices in rhesus monkeys, to test this hypothesis. We observe the same value sensitivity in both human perceptual decisions and monkey value-based decisions. These results endorse the idea that neural decision systems make use of the same basic principle of value-sensitivity in order to resolve costly deadlocks and thus improve long-term reward intake.

7.
Eur J Neurosci ; 47(8): 979-993, 2018 04.
Article in English | MEDLINE | ID: mdl-29431892

ABSTRACT

The anterior cingulate cortex can be divided into distinct ventral (subgenual, sgACC) and dorsal (dACC), portions. The role of dACC in value-based decision-making is hotly debated, while the role of sgACC is poorly understood. We recorded neuronal activity in both regions in rhesus macaques performing a token-gambling task. We find that both encode many of the same variables; including integrated offered values of gambles, primary as well as secondary reward outcomes, number of current tokens and anticipated rewards. Both regions exhibit memory traces for offer values and putative value comparison signals. Both regions use a consistent scheme to encode the value of the attended option. This result suggests that neurones do not appear to be specialized for specific offers (that is, neurones use an attentional as opposed to labelled line coding scheme). We also observed some differences between the two regions: (i) coding strengths in dACC were consistently greater than those in sgACC, (ii) neurones in sgACC responded especially to losses and in anticipation of primary rewards, while those in dACC showed more balanced responding and (iii) responses to the first offer were slightly faster in sgACC. These results indicate that sgACC and dACC have some functional overlap in economic choice, and are consistent with the idea, inspired by neuroanatomy, which sgACC may serve as input to dACC.


Subject(s)
Action Potentials/physiology , Choice Behavior/physiology , Decision Making/physiology , Gambling/physiopathology , Gyrus Cinguli/physiology , Animals , Macaca mulatta , Neurons/physiology , Reward
8.
PLoS Biol ; 15(11): e2003091, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29141002

ABSTRACT

We hypothesized that during binary economic choice, decision makers use the first option they attend as a default to which they compare the second. To test this idea, we recorded activity of neurons in the dorsal anterior cingulate cortex (dACC) of macaques choosing between gambles presented asynchronously. We find that ensemble encoding of the value of the first offer includes both choice-dependent and choice-independent aspects, as if reflecting a partial decision. That is, its responses are neither entirely pre- nor post-decisional. In contrast, coding of the value of the second offer is entirely decision dependent (i.e., post-decisional). This result holds even when offer-value encodings are compared within the same time period. Additionally, we see no evidence for 2 pools of neurons linked to the 2 offers; instead, all comparison appears to occur within a single functionally homogenous pool of task-selective neurons. These observations suggest that economic choices reflect a context-dependent evaluation of attended options. Moreover, they raise the possibility that value representations reflect, to some extent, a tentative commitment to a choice.


Subject(s)
Decision Making , Gyrus Cinguli/physiology , Action Potentials , Animals , Behavior, Animal , Choice Behavior , Macaca mulatta , Male , Neurons/physiology , Task Performance and Analysis
9.
J Neurophysiol ; 115(3): 1098-111, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26631146

ABSTRACT

When we evaluate an option, how is the neural representation of its value linked to information that identifies it, such as its position in space? We hypothesized that value information and identity cues are not bound together at a particular point but are represented together at the single unit level throughout the entirety of the choice process. We examined neuronal responses in two-option gambling tasks with lateralized and asynchronous presentation of offers in five reward regions: orbitofrontal cortex (OFC, area 13), ventromedial prefrontal cortex (vmPFC, area 14), ventral striatum (VS), dorsal anterior cingulate cortex (dACC), and subgenual anterior cingulate cortex (sgACC, area 25). Neuronal responses in all areas are sensitive to the positions of both offers and of choices. This selectivity is strongest in reward-sensitive neurons, indicating that it is not a property of a specialized subpopulation of cells. We did not find consistent contralateral or any other organization to these responses, indicating that they may be difficult to detect with aggregate measures like neuroimaging or studies of lesion effects. These results suggest that value coding is wed to factors that identify the object throughout the reward system and suggest a possible solution to the binding problem raised by abstract value encoding schemes.


Subject(s)
Choice Behavior , Frontal Lobe/physiology , Neurons/physiology , Reward , Space Perception , Animals , Frontal Lobe/cytology , Limbic Lobe/cytology , Limbic Lobe/physiology , Macaca mulatta , Male
SELECTION OF CITATIONS
SEARCH DETAIL