Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Pharmaceutics ; 16(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39339206

ABSTRACT

Combination therapy integrated with nanotechnology offers a promising alternative for breast cancer treatment. The inclusion of pequi oil, anacardic acid (AA), and docetaxel (DTX) in a nanoemulsion can amplify the antitumor effects of each molecule while reducing adverse effects. Therefore, the study aims to develop pequi oil-based nanoemulsions (PeNE) containing DTX (PDTX) or AA (PAA) and to evaluate their cytotoxicity against triple-negative breast cancer cells (4T1) in vitro. The PeNE without and with AA (PAA) and DTX (PDTX) were prepared by sonication and characterized by ZetaSizer® and electronic transmission microscopy. Viability testing and combination index (CI) were determined by MTT and Chou-Talalay methods, respectively. Flow cytometry was employed to investigate the effects of the formulations on cell structures. PeNE, PDTX, and PAA showed hydrodynamic diameter < 200 nm and a polydispersity index (PdI) of 0.3. The association PDTX + PAA induced a greater decrease in cell viability (~70%, p < 0.0001) and additive effect (CI < 1). In parallel, an association of the DTX + AA molecules led to antagonism (CI > 1). Additionally, PDTX + PAA induced an expressive morphological change, a major change in lysosome membrane permeation and mitochondria membrane permeation, cell cycle blockage in G2/M, and phosphatidylserine exposure. The study highlights the successful use of pequi oil nanoemulsions as delivery systems for DTX and AA, which enhances their antitumor effects against breast cancer cells. This nanotechnological approach shows significant potential for the treatment of triple-negative breast cancer.

2.
Pharmaceutics ; 16(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39204431

ABSTRACT

This study describes the synthesis and characterization of chlorambucil (CLB)-functionalized mesoporous silica nanoparticles (MSNs) for potential application in cancer therapy. The nanoparticles were designed with a diameter between 20 and 50 nm to optimize cellular uptake and avoid rapid clearance from the bloodstream. The synthesis method involved modifying a previously reported technique to reduce particle size. Successful functionalization with CLB was confirmed through various techniques, including Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The cytotoxicity of the CLB-functionalized nanoparticles (MSN@NH2-CLB) was evaluated against human lung adenocarcinoma cells (A549) and colon carcinoma cells (CT26WT). The results suggest significantly higher cytotoxicity of MSN@NH2-CLB compared to unbound CLB, with improved selectivity towards cancer cells over normal cells. This suggests that MSN@NH2-CLB holds promise as a drug delivery system for targeted cancer therapy.

3.
Pharmaceutics ; 16(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38675171

ABSTRACT

Cutaneous leishmaniasis (CL) is a neglected tropical disease. The treatment is restricted to drugs, such as meglumine antimoniate and amphotericin B, that exhibit toxic effects, high cost, long-term treatment, and limited efficacy. The development of new alternative therapies, including the identification of effective drugs for the topical and oral treatment of CL, is of great interest. In this sense, a combination of topical photodynamic therapy (PDT) with chloroaluminum phthalocyanine liposomes (Lip-ClAlPc) and the oral administration of a self-emulsifying drug delivery system containing fexinidazole (SEDDS-FEX) emerges as a new strategy. The aim of the present study was to prepare, characterize, and evaluate the efficacy of combined therapy with Lip-ClAlPc and SEDDS-FEX in the experimental treatment of Leishmania (Leishmania) major. Lip-ClAlPc and SEDDS-FEX were prepared, and the antileishmanial efficacy study was conducted with the following groups: 1. Lip-ClAlPc (0.05 mL); 2. SEDDS-FEX (50 mg/kg/day); 3. Lip-ClAlPc (0.05 mL)+SEDDS-FEX (50 mg/kg/day) combination; 4. FEX suspension (50 mg/kg/day); and 5. control (untreated). BALB/c mice received 10 sessions of topical Lip-ClAlPc on alternate days and 20 consecutive days of SEDDS-FEX or FEX oral suspension. Therapeutical efficacy was evaluated via the parasite burden (limiting-dilution assay), lesion size (mm), healing of the lesion, and histological analyses. Lip-ClAlPc and SEDDS-FEX presented physicochemical characteristics that are compatible with the administration routes used in the treatments. Lip-ClAlPc+SEDDS-FEX led to a significant reduction in the parasitic burden in the lesion and spleen when compared to the control group (p < 0.05) and the complete healing of the lesion in 43% of animals. The Lip-ClAlPc+SEDDS-FEX combination may be promising for the treatment of CL caused by L. major.

4.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38139786

ABSTRACT

Melanoma, a severe form of skin cancer intricately linked to genetic and environmental factors, is predicted to reach 100,000 new cases worldwide by 2040, underscoring the need for effective and safe treatment options. In this study, we assessed the efficacy of a photosensitizer called Chlorophyll A (Chl-A) incorporated into hydrogels (HGs) made of chitosan (CS) and poloxamer 407 (P407) for Photodynamic Therapy (PDT) against the murine melanoma cell line B16-F10. The HG was evaluated through various tests, including rheological studies, SEM, and ATR-FTIR, along with cell viability assays. The CS- and P407-based HGs effectively released Chl-A and possessed the necessary properties for topical application. The photodynamic activity of the HG containing Chl-A was evaluated in vitro, demonstrating high therapeutic potential, with an IC50 of 25.99 µM-an appealing result when compared to studies in the literature reporting an IC50 of 173.8 µM for cisplatin, used as a positive control drug. The developed formulation of CS and P407-based HG, serving as a thermosensitive system for topical applications, successfully controlled the release of Chl-A. In vitro cell studies associated with PDT exhibited potential against the melanoma cell line.

5.
Pharmaceutics ; 14(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432650

ABSTRACT

Breast cancer is the most frequent cause of cancer death in women, representing the fifth leading cause of cancer death overall. Therefore, the growing search for the development of new treatments for breast cancer has been developed lately as well as drug delivery systems such as biocompatible metal-organic Frameworks (bio-MOFs). These may be promising and attractive for drug incorporation and release. The present study aims to develop a drug carrier system RCA (bioMOF-100 submitted to the activation process) containing incorporated curcumin (CCM), whose material surface is coated with folic acid molecules (FA) to promote the targeting of drug carrier systems to the tumor region. They were synthesized and characterized using several characterization techniques. The materials were submitted to drug encapsulation tests, whose encapsulation efficiency was 32.80% for CCM@RCA-1D. Using the 1H nuclear magnetic resonance (NMR) spectroscopy technique, it was possible to verify the appearance of signals referring to folic acid, suggesting success in the functionalization of these matrices. In vitro tests such as cell viability and type of cell death were evaluated in both series of compounds (CCM@RCA-1D, CCM@RCA-1D/FA) in breast tumor lines. The results revealed low toxicity of the materials and cell death by late apoptosis. Thus, these results indicate that the matrices studied can be promising carriers in the treatment of breast cancer.

6.
Biomed Pharmacother ; 153: 113538, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076617

ABSTRACT

The World Health Organizations declaration of the COVID-19 pandemic was a milestone for the scientific community. The high transmission rate and the huge number of deaths, along with the lack of knowledge about the virus and the evolution of the disease, stimulated a relentless search for diagnostic tests, treatments, and vaccines. The main challenges were the differential diagnosis of COVID-19 and the development of specific, rapid, and sensitive tests that could reach all people. RT-PCR remains the gold standard for diagnosing COVID-19. However, new methods, such as other molecular techniques and immunoassays emerged. Also, the need for accessible tests with quick results boosted the development of point of care tests (POCT) that are fast, and automated, with high precision and accuracy. This assay reduces the dependence on laboratory conditions and mass testing of the population, dispersing the pressure regarding screening and detection. This review summarizes the advances in the diagnostic field since the pandemic started, emphasizing various laboratory techniques for detecting COVID-19. We reviewed the main existing diagnostic methods, as well as POCT under development, starting with RT-PCR detection, but also exploring other nucleic acid techniques, such as digital PCR, loop-mediated isothermal amplification-based assay (RT-LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and next-generation sequencing (NGS), and immunoassay tests, and nanoparticle-based biosensors, developed as portable instruments for the rapid standard diagnosis of COVID-19.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Pandemics , Point-of-Care Testing , RNA, Viral , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014626

ABSTRACT

This study investigated the fabrication of spherical gold shelled maghemite nanoparticles for use in magnetic hyperthermia (MHT) assays. A maghemite core (14 ± 3 nm) was used to fabricate two samples with different gold thicknesses, which presented gold (g)/maghemite (m) content ratios of 0.0376 and 0.0752. The samples were tested in MHT assays (temperature versus time) with varying frequencies (100-650 kHz) and field amplitudes (9-25 mT). The asymptotic temperatures (T∞) of the aqueous suspensions (40 mg Fe/mL) were found to be in the range of 59-77 °C (naked maghemite), 44-58 °C (g/m=0.0376) and 33-51 °C (g/m=0.0752). The MHT data revealed that T∞ could be successful controlled using the gold thickness and cover the range for cell apoptosis, thereby providing a new strategy for the safe use of MHT in practice. The highest SAR (specific absorption rate) value was achieved (75 kW/kg) using the thinner gold shell layer (334 kHz, 17 mT) and was roughly twenty times bigger than the best SAR value that has been reported for similar structures. Moreover, the time that was required to achieve T∞ could be modeled by changing the thermal conductivity of the shell layer and/or the shape/size of the structure. The MHT assays were pioneeringly modeled using a derived equation that was analytically identical to the Box-Lucas method (which was reported as phenomenological).

8.
Crit Care Explor ; 4(8): e0734, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35928539

ABSTRACT

This study sought to identify monocyte alterations from septic patients after hospital discharge by evaluating gene expression of inflammatory mediators and monocyte polarization markers. It was hypothesized that sepsis reprograms the inflammatory state of monocytes, causing effects that persist after hospital discharge and influencing patient outcomes. DESIGN: The gene expression patterns of inflammatory receptors, M1 and M2 macrophage polarization markers, NLRP3 inflammasome components, and pro- and anti-inflammatory cytokines in monocytes were assessed. PATIENTS: Thirty-four patients from the University of São Paulo Hospital, during the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase F) after discharge, were included. Patients that died during phases A and B were grouped separately, and the remaining patients were collectively termed the survivor group. MEASUREMENTS AND MAIN RESULTS: The gene expression of toll-like receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor molecule apoptosis-associated speck-like protein containing a CARD, caspase 1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-1α, interleukin-1ß, interleukin-18, and high-mobility group box 1 protein (proinflammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 (M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C motif chemokine ligand 22, transforming growth factor-beta (TGF-ß), SR-B1, and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polarization and tissue repair markers) was upregulated in monocytes from phase A until phase E compared with the control group. CONCLUSIONS: Sepsis reprograms the inflammatory state of monocytes, probably contributing to postsepsis syndrome development and mortality.

9.
Nanomaterials (Basel) ; 12(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35630905

ABSTRACT

Diets rich in omega-3 or -6 fatty acids will produce different profiles for cell membranes phospholipid constitutions. Omegas 3 and 6 are part of the diet and can modulate the inflammatory profile. We evaluated the effects of the oral absorption of fish oil, when associated with a lipid nanoemulsion in an experimental pulmonary inflammatory model. Pulmonary fibrosis is a disease associated with excessive extracellular matrix deposition. We determined to investigate the morphophysiological mechanisms in mice that were pretreated after induction with bleomycin (BLM). The pretreatment was for 21 days with saline solution, sunflower oil (SO), fish oil (FO), and fish oil nanoemulsion (NEW3). The animals received a daily dose of 50 mg/Kg of docosahexaenoic acid DHA and 10 mg/Kg eicosapentaenoic (EPA) (100 mg/Kg), represented by a daily dose of 40 µL of NEW3. The blank group was treated with the same amount daily (40 µL) during the 21 days of pretreatment. The animals were treated with SO and FO, 100 mg/Kg (containing 58 mg/Kg of polyunsaturated fats/higher% linoleic acid) and 100 mg/Kg (50 mg/Kg of DHA and 10 mg/Kg EPA), respectively. A single dose of 5 mg/mL (50 µL) bleomycin sulfate, by the intratracheal surgical method in BALB/cAnNTac (BALB/c). NEW3 significantly reduced fibrotic progression, which can be evidenced by the protection from loss of body mass, increase in respiratory incursions per minute, decreased spacing of alveolar septa, decreased severity of fibrosis, and changes in the respiratory system. NEW3 attenuated the inflammatory changes developed in the experimental model of pulmonary fibrosis, while group SO showed a significant increase in inflammatory changes. This concluded that the presented results demonstrated that is possible to positively modulate the immune and inflamamtory response to an external agressor, by changing the nutitional intake of specific fatty acids, such as omega-3 placed in fish oil. Moreover, these benefits can be improved by the nanoencapsulation of fish oil in lipid nanoemulsions.

10.
Talanta ; 243: 123355, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35272155

ABSTRACT

Mass testing for the diagnosis of COVID-19 has been hampered in many countries owing to the high cost of genetic material detection. This study reports on a low-cost immunoassay for detecting SARS-CoV-2 within 30 min using dynamic light scattering (DLS). The immunosensor comprises 50-nm gold nanoparticles (AuNPs) functionalized with antibodies against SARS-CoV-2 spike glycoprotein, whose bioconjugation was confirmed using transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and surface-enhanced Raman scattering spectroscopy (SERS). The specific binding of the bioconjugates to the spike protein led to an increase in bioconjugate size, with a limit of detection (LOD) 5.29 × 103 TCID50/mL (Tissue Culture Infectious Dose). The immunosensor was also proven to be selective upon interaction with influenza viruses once no increase in size was observed after DLS measurement. The strategy proposed here aimed to use antibodies conjugated to AuNPs as a generic platform that can be extended to other detection principles, enabling technologies for low-cost mass testing for COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Dynamic Light Scattering , Gold/chemistry , Humans , Immunoassay/methods , Metal Nanoparticles/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Proteins
11.
Pharmaceutics ; 14(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35057091

ABSTRACT

Photodynamic therapy (PDT) has been clinically employed to treat mainly superficial cancer, such as basal cell carcinoma. This approach can eliminate tumors by direct cytotoxicity, tumor ischemia, or by triggering an immune response against tumor cells. Among the immune-related mechanisms of PDT, the induction of immunogenic cell death (ICD) in target cells is to be cited. ICD is an apoptosis modality distinguished by the emission of damage-associated molecular patterns (DAMP). Therefore, this study aimed to analyze the immunogenicity of CT26 and 4T1 treated with PDT mediated by aluminum-phthalocyanine in nanoemulsion (PDT-AlPc-NE). Different PDT-AlPc-NE protocols with varying doses of energy and AlPc concentrations were tested. The death mechanism and the emission of DAMPs-CRT, HSP70, HSP90, HMGB1, and IL-1ß-were analyzed in cells treated in vitro with PDT. Then, the immunogenicity of these cells was assessed in an in vivo vaccination-challenge model with BALB/c mice. CT26 and 4T1 cells treated in vitro with PDT mediated by AlPc IC50 and a light dose of 25 J/cm2 exhibited the hallmarks of ICD, i.e., these cells died by apoptosis and exposed DAMPs. Mice injected with these IC50 PDT-treated cells showed, in comparison to the control, increased resistance to the development of tumors in a subsequent challenge with viable cells. Mice injected with 4T1 and CT26 cells treated with higher or lower concentrations of photosensitizer and light doses exhibited a significantly lower resistance to tumor development than those injected with IC50 PDT-treated cells. The results presented in this study suggest that both the photosensitizer concentration and light dose affect the immunogenicity of the PDT-treated cells. This event can affect the therapy outcomes in vivo.

12.
Nanotechnology ; 33(20)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35100566

ABSTRACT

Short time treatment with reduced dosages of selol-loaded PLGA nanocapsules (NcSel) combined with magnetic hyperthermia (MHT) is evaluated in aged Erhlich tumor-bearing mice. Clinical, hematological, biochemical, genotoxic and histopathological parameters are assessed during 7 d treatment with NcSel and MHT, separately or combined. The time evolution of the tumor volume is successfully modeled using the logistic mathematical model. The combined therapy comprising NcSel and MHT is able to hinder primary tumor growth and a case of complete tumor remission is recorded. Moreover, no metastasis was diagnosed and the adverse effects are negligible. NcSel plus MHT may represent an effective and safe alternative to cancer control in aged patients. Future clinical trials are encouraged.


Subject(s)
Breast Neoplasms/therapy , Hyperthermia, Induced , Magnetite Nanoparticles/therapeutic use , Nanocapsules/therapeutic use , Selenium Compounds/therapeutic use , Animals , Breast Neoplasms/pathology , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/therapy , Cell Cycle/drug effects , Combined Modality Therapy , DNA Fragmentation/drug effects , Female , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Mice , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Selenium Compounds/chemistry , Time Factors , Treatment Outcome , Tumor Burden/drug effects
13.
Nanomedicine (Lond) ; 17(3): 167-179, 2022 02.
Article in English | MEDLINE | ID: mdl-35048742

ABSTRACT

Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.


Subject(s)
Curcumin , Nanoparticles , Animals , Drug Carriers , Lipids , Liposomes , Mice , Nanoparticles/toxicity , Particle Size
14.
Nanomedicine (Lond) ; 17(27): 2073-2088, 2022 11.
Article in English | MEDLINE | ID: mdl-36853205

ABSTRACT

Aim: Investigate the heterogeneous tumor tissue organization and examine how this condition can interfere with the passive delivery of a lipid nanoemulsion in two breast cancer preclinical models (4T1 and Ehrlich). Materials & methods: The authors used in vivo image techniques to follow the nanoemulsion biodistribution and microtomography, as well as traditional histopathology and electron microscopy to evaluate the tumor structural characteristics. Results & conclusion: Lipid nanoemulsion was delivered to the tumor, vascular organization depends upon the subtumoral localization and this heterogeneous organization promotes a nanoemulsion biodistribution to the highly vascular peripherical region. Also, the results are presented with a comprehensive mathematical model, describing the differential biodistribution in two different breast cancer models, the 4T1 and Ehrlich models.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Cell Line, Tumor , Tissue Distribution , Nanoparticles/chemistry , Lipids , Breast Neoplasms/diagnostic imaging , Emulsions/chemistry
16.
Pharmaceutics ; 13(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34575541

ABSTRACT

Controlling populations of free-roaming dogs and cats poses a huge challenge worldwide. Non-surgical neutering strategies for male animals have been long pursued, but the implementation of the procedures developed has remained limited to date. As submitting the testes to high temperatures impairs spermatogenesis, the present study investigated localized application of magnetic nanoparticle hyperthermia (MNH) to the testicles as a potential non-surgical sterilization method for animals. An intratesticular injection of a magnetic fluid composed of manganese-ferrite nanoparticles functionalized with citrate was administered followed by testicle exposure to an alternate magnetic field to generate localized heat. Testicular MNH was highly effective, causing progressive seminiferous tubule degeneration followed by substitution of the parenchyma with stromal tissue and gonadal atrophy, suggesting an irreversible process with few side effects to general animal health.

17.
Biomed Pharmacother ; 142: 112000, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34426249

ABSTRACT

The main goal of this study is to evaluate the efficacy of the paclitaxel (PTX) drug formulated with a liposomal nanosystem (L-PTX) in a peritoneal carcinomatosis derived from ovarian cancer. In vitro cell viability studies with the human ovarian cancer line A2780 showed a 50% decrease in the inhibitory concentration for L-PTX compared to free PTX. A2780 cells treated with the L-PTX formulation demonstrated a reduced capacity to form colonies in comparison to those treated with PTX. Cell death following L-PTX administration hinted at apoptosis, with most cells undergoing initial apoptosis. A2780 cells exhibited an inhibitory migration profile when analyzed by Wound Healing and real-time cell analysis (xCELLigence) methods after L-PTX administration. This inhibition was related to decreased expression of the zinc finger E-box-binding homeobox 1 (ZEB1) and transforming growth factor 2 (TGF-ß2) genes. In vivoL-PTX administration strongly inhibited tumor cell proliferation in ovarian peritoneal carcinomatosis derived from ovarian cancer, indicating higher antitumor activity than PTX. L-PTX formulation did not show toxicity in the mice model. This study demonstrated that liposomal paclitaxel formulations are less toxic to normal tissues than free paclitaxel and are more effective in inhibiting tumor cell proliferation/migration and inducing ZEB1/TGF-ß2 gene expression.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Ovarian Neoplasms/drug therapy , Paclitaxel/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic , Humans , Liposomes , Mice , Mice, Inbred BALB C , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Paclitaxel/administration & dosage , Peritoneal Neoplasms/drug therapy
18.
Infect Chemother ; 53(2): 342-354, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34216127

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) using chloroaluminium phthalocyanine (ClAlPc) and paromomycin sulfate (PM) can be effective against New World Leishmania species involved in cutaneous leishmaniasis (CL). The aim of this study is to assay the skin permeation and the antileishmanial effects of a nanoemulsion (NE) containing both ClAlPc and PM in experimental CL by Leishmania (Viannia) braziliensis. MATERIAL AND METHODS: Cremophor ELP/castor oil-based NEs were prepared by a low-energy method and characterized for their physicochemical parameters. The NEs were used to deliver both ClAlPc and PM to leishmania cells. The in vitro toxicity of NEs were tested in vitro against L. (V.) braziliensis and THP-1 cells. The in vivo toxicity was assessed in non-infected BALB/c mice. Ex-vivo permeation and retention studies using healthy mice skin were also conducted. Finally, the in vivo activity of NE-PM+ClAlPc after PDT was tested in BALB/c mice infected with parasites. RESULTS: NEs are colloidally stable with average droplet diameter of 30 nm, polydispersity index (PDI) below 0.2, and zeta potential near zero. Both promastigotes and intracellular amastigotes treated with NE-PM, NE-ClAlPc and NE-PM+ClAlPc were inhibited at >50%, >95%, >88%, respectively, after PDT with a phototoxic index (PI) >1.2. No skin ClAlPc permeation was observed. In contrast, PM skin permeation was 80-fold higher using PM-loaded NE formulation in comparison to aqueous PM solution. Topical treatment with NE formulations showed no signs of local toxicity or genotoxicity. In addition, concentrations of PM between 27.3 - 292.5 µM/25 mg of tissue were detected in different organs. In vivo, the NE-PM+ClAlPc treatment did not reduce skin lesions. CONCLUSION: The Cremophor ELP/castor oil NE formulation increases the permeation of PM through the skin and can be used to co-deliver PM plus ClAlPc for combined PDT protocols. However, the lack of efficacy in the in vivo model evidences that the therapeutical scheme has to be improved.

19.
Pharmaceutics ; 13(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064302

ABSTRACT

Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.

20.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21190387, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153290

ABSTRACT

HIGHLIGHTS Production of lipid nanoemulsions (<100 nm) of industrial interest with low energy demand. The antioxidant properties of babassu oil have been improved and the nanoemulsions are not cytotoxic. Babassu oil is a food and medicinal product. The nanoemulsion is strategic for the developed of new antioxidants phytotherapeutics.


Abstract Background: Babassu oil is an extract from a Brazilian native coconut (Orbignya phalerata Martius) and is used both as a food and a medicinal product. Methods: we produced two babassu oil nanoemulsions and evaluated them regarding their nanoscopic stability, antioxidant activity and cytotoxicity.The nanoemulsions were characterized by Dynamic Light Scattering, and their stability was investigated for 120 days. The antioxidant activity was assessed by Spectroscopy Electron Paramagnetic Resonance, and the cytotoxicity was assessed by a colorimetric method (MTT) with the NIH/3T3 cell lineage. Results: the results showed nanoemulsions with average hydrodynamic diameter lower than 100 nm (p(0.001).and a polydispersity index of less than 0.3 (p(0.001), indicating monodisperse systems and good stability at room temperature. The exposure of nanoemulsions at varying pH revealed that the isoelectric point was at 3.0, and the images obtained by Transmission Electron Microscopy showed spherical droplets with a size 27 nm. The antioxidant activity showed that the babassu nanoemulsions exposed to free radicals had a better response when compared to the oil free samples. The cell viability assays showed low toxicity of the formulation with viability over 92% (p(0.05). Conclusion: babassu oil nanoformulations showed low polydispersity and kinetic stability with effective antioxidant action. Therefore, they can be promising for application in the food industry or as antioxidant phytotherapeutics.


Subject(s)
Palm Oil/chemistry , Nanotechnology , Antioxidants , Plant Extracts/chemistry , Food Industry , Cytotoxins , Microscopy, Electron, Transmission , Emulsions , Nanocomposites
SELECTION OF CITATIONS
SEARCH DETAIL